skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Significance of Gravitational Nonlinearities on the Dynamics of Disk Galaxies
The discrepancy between the visible mass in galaxies or galaxy clusters, and that inferred from their dynamics is well known. The prevailing solution to this problem is dark matter. Here we show that a different approach, one that conforms to both the current Standard Model of Particle Physics and General Relativity, explains the recently observed tight correlation between the galactic baryonic mass and its observed acceleration. Using direct calculations based on General Relativity's Lagrangian, and parameter-free galactic models, we show that the nonlinear effects of General Relativity make baryonic matter alone sufficient to explain this observation.  more » « less
Award ID(s):
1847771
PAR ID:
10157235
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical journal
ISSN:
2471-4259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There has been much interest in novel models of dark matter that exhibit interesting behavior on galactic scales. A primary motivation is the observed Baryonic Tully-Fisher Relation in which the mass of galaxies increases as the quartic power of rotation speed. This scaling is not obviously accounted for by standard cold dark matter. This has prompted the development of dark matter models that exhibit some form of so-called MONDian phenomenology to account for this galactic scaling, while also recovering the success of cold dark matter on large scales. A beautiful example of this are the so-called superfluid dark matter models, in which a complex bosonic field undergoes spontaneous symmetry breaking on galactic scales, entering a superfluid phase with a 3/2 kinetic scaling in the low energy effective theory, that mediates a long-ranged MONDian force. In this work we examine the causality and locality properties of these and other related models. We show that the Lorentz invariant completions of the superfluid models exhibit high energy perturbations that violate global hyperbolicity of the equations of motion in the MOND regime and can be superluminal in other parts of phase space. We also examine a range of alternate models, finding that they also exhibit forms of non-locality. 
    more » « less
  2. Abstract Einstein’s general theory of relativity from 19151remains the most successful description of gravitation. From the 1919 solar eclipse2to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory4appeared in 1928; the positron was observed5in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP. 
    more » « less
  3. ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$. 
    more » « less
  4. ABSTRACT Where the cosmic baryons lie in and around galactic dark matter haloes is only weakly constrained. We develop a method to quickly paint on models for their distribution. Our approach uses the statistical advantages of N-body simulations, while painting on the profile of gas around individual haloes in ways that can be motivated by semi-analytic models or zoom-in hydrodynamic simulations of galaxies. Possible applications of the algorithm include extragalactic dispersion measures to fast radio bursts (FRBs), the Sunyaev–Zeldovich effect, baryonic effects on weak lensing, and cosmic metal enrichment. As an initial application, we use this tool to investigate how the baryonic profile of foreground galactic-mass haloes affects the statistics of the dispersion measure (DM) towards cosmological FRBs. We show that the distribution of DM is sensitive to the distribution of baryons in galactic haloes, with viable gas profile models having significantly different probability distributions for DM to a given redshift. We also investigate the requirements to statistically measure the circumgalactic electron profile for FRB analyses that stack DM with impact parameter to foreground galaxies, quantifying the size of the contaminating ‘two-halo’ term from correlated systems and the number of FRBs for a high significance detection. Publicly available python modules implement our CGMBrush algorithm. 
    more » « less
  5. Abstract Testing the standard cosmological model (ΛCDM) at small scales is challenging. Galaxies that inhabit low-mass dark matter halos provide an ideal test bed for dark matter models by linking observational properties of galaxies at small scales (low mass, low velocity) to low-mass dark matter halos. However, the observed kinematics of these galaxies do not align with the kinematics of the dark matter halos predicted to host them, obscuring our understanding of the low-mass end of the galaxy–halo connection. We use deep Hiobservations of low-mass galaxies at high spectral resolution in combination with cosmological simulations of dwarf galaxies to better understand the connection between dwarf galaxy kinematics and low-mass halos. Specifically, we use Hiline widths to directly compare to the maximum velocities in a dark matter halo and find that each deeper measurement approaches the expected one-to-one relationship between the observed kinematics and the predicted kinematics in ΛCDM. We also measure baryonic masses and place these on the baryonic Tully–Fisher relation (BTFR). Again, our deepest measurements approach the theoretical predictions for the low-mass end of this relation, a significant improvement on similar measurements based on line widths measured at 50% and 20% of the peak. Our data also hint at the rollover in the BTFR predicted by hydrodynamical simulations of ΛCDM for low-mass galaxies. 
    more » « less