skip to main content


Search for: All records

Award ID contains: 1847771

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard X-ray Thomson sources based on laser plasma accelerators. 
    more » « less
  2. The discrepancy between the visible mass in galaxies or galaxy clusters, and that inferred from their dynamics is well known. The prevailing solution to this problem is dark matter. Here we show that a different approach, one that conforms to both the current Standard Model of Particle Physics and General Relativity, explains the recently observed tight correlation between the galactic baryonic mass and its observed acceleration. Using direct calculations based on General Relativity's Lagrangian, and parameter-free galactic models, we show that the nonlinear effects of General Relativity make baryonic matter alone sufficient to explain this observation. 
    more » « less