skip to main content


Title: Reduction Midpoint Potentials of Bifurcating Electron Transfer Flavoproteins
Recently, a variety of enzymes have been found to accept electrons from NAD(P)H yet reduce lower-potential carriers such as ferredoxin and flavodoxin semiquinone, in apparent violation of thermodynamics. The reaction is favorable overall, however, because these enzymes couple the foregoing endergonic one-electron transfer to exergonic transfer of the other electron from each NAD(P)H, in a process called 'flavin-based electron bifurcation'. The reduction midpoint potentials (E°s) of the multiple flavins in these enzymes are critical to their mechanisms. We describe methods we have found to be useful for measuring each of the E°s of each of the flavins in bifurcating electron transfer flavoproteins.  more » « less
Award ID(s):
1808433
NSF-PAR ID:
10157399
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Methods in enzymology
ISSN:
0076-6879
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flavin-based electron bifurcation allows enzymes to redistribute energy among electrons by coupling endergonic and exergonic electron transfer reactions. Diverse bifurcating enzymes employ a two-flavin electron transfer flavoprotein (ETF) that accepts hydride from NADH at a flavin (the so-called bifurcating FAD, Bf-FAD). The Bf-FAD passes one electron exergonically to a second flavin thereby assuming a reactive semiquinone state able to reduce ferredoxin or flavodoxin semiquinone. The flavin that accepts one electron and passes it on via exergonic electron transfer is known as the electron transfer FAD (ET-FAD) and is believed to correspond to the single FAD present in canonical ETFs, in domain II. The Bf-FAD is believed to be the one that is unique to bifurcating ETFs, bound between domains I and III. This very reasonable model has yet to be challenged experimentally. Herein we used site-directed mutagenesis to disrupt FAD binding to the presumed Bf site between domains I and III, in the Bf-ETF from Rhodopseudomonas palustris ( Rpa ETF). The resulting protein contained only 0.80 ± 0.05 FAD, plus 1.21 ± 0.04 bound AMP as in canonical ETFs. The flavin was not subject to reduction by NADH, confirming absence of Bf-FAD. The retained FAD displayed visible circular dichroism (CD) similar to that of the ET-FAD of Rpa ETF. Likewise, the mutant underwent two sequential one-electron reductions forming and then consuming anionic semiquinone, reproducing the reactivity of the ET-FAD. These data confirm that the retained FAD in domain II corresponds the ET-FAD. Quantum chemical calculations of the absorbance and CD spectra of each of WT Rpa ETF's two flavins reproduced the observed differences between their CD and absorbance signatures. The calculations for the flavin bound in domain II agreed better with the spectra of the ET-flavin, and those calculated based on the flavin between domains I and III agreed better with spectra of the Bf-flavin. Thus calculations independently confirm the locations of each flavin. We conclude that the site in domain II harbours the ET-FAD whereas the mutated site between domains I and III is the Bf-FAD site, confirming the accepted model by two different tests. 
    more » « less
  2. Abstract

    The goal of this study is to validate fluorescence intensity and lifetime imaging of metabolic co‐enzymes NAD(P)H and FAD (optical metabolic imaging, or OMI) as a method to quantify cell‐cycle status of tumor cells. Heterogeneity in tumor cell‐cycle status (e. g. proliferation, quiescence, apoptosis) increases drug resistance and tumor recurrence. Cell‐cycle status is closely linked to cellular metabolism. Thus, this study applies cell‐level metabolic imaging to distinguish proliferating, quiescent, and apoptotic populations. Two‐photon microscopy and time‐correlated single photon counting are used to measure optical redox ratio (NAD(P)H fluorescence intensity divided by FAD intensity), NAD(P)H and FAD fluorescence lifetime parameters. Redox ratio, NAD(P)H and FAD lifetime parameters alone exhibit significant differences (p<0.05) between population means. To improve separation between populations, linear combination models derived from partial least squares ‐ discriminant analysis (PLS‐DA) are used to exploit all measurements together. Leave‐one‐out cross validation of the model yielded high classification accuracies (92.4 and 90.1 % for two and three populations, respectively). OMI and PLS‐DA also identifies each sub‐population within heterogeneous samples. These results establish single‐cell analysis with OMI and PLS‐DA as a label‐free method to distinguish cell‐cycle status within intact samples. This approach could be used to incorporate cell‐level tumor heterogeneity in cancer drug development.magnified image

     
    more » « less
  3. Bifurcating electron transferring flavoproteins (Bf-ETFs) tune chemically identical flavins to two contrasting roles. To understand how, we used hybrid quantum mechanical molecular mechanical calculations to characterize non-covalent interactions applied to each flavin by the protein. Our computations replicated the differences between the reactivities of the flavins: the electron transferring flavin (ETflavin) was calculated to stabilize anionic semiquinone (ASQ) as needed to execute its single-electron transfers, whereas the Bf flavin (Bfflavin) was found to disfavor the ASQ state more than does free flavin and to be less susceptible to reduction. The stability of ETflavin ASQ was attributed in part to H-bond donation to the flavin O2 from a nearby His side chain, via comparison of models employing different tautomers of His. This H-bond between O2 and the ET site was uniquely strong in the ASQ state, whereas reduction of ETflavin to the anionic hydroquinone (AHQ) was associated with side chain reorientation, backbone displacement and reorganization of its H-bond network including a Tyr from the other domain and subunit of the ETF. The Bf site was less responsive overall, but formation of the Bfflavin AHQ allowed a nearby Arg side chain to adopt an alternative rotamer that can H-bond to the Bfflavin O4. This would stabilize the anionic Bfflavin and rationalize effects of mutation at this position. Thus, our computations provide insights on states and conformations that have not been possible to characterize experimentally, offering explanations for observed residue conservation and raising possibilities that can now be tested. 
    more » « less
  4. Abstract

    The anaerobic parasiteGiardia lamblia, causative agent of persistent diarrhea, contains a family of nitroreductase genes most likely acquired by lateral transfer from anaerobic bacteria or archaebacteria. Two of these nitroreductases, containing a ferredoxin domain at their N‐terminus, NR1, and NR2, have been characterized previously. Here, we present the characterization of a third member of this family, NR3. In functional assays, recombinant NR1 and NR3 reduced quinones like menadione and the antibiotic tetracycline, and—to much lesser extents—the nitro compound dinitrotoluene. Conversely, recombinant NR2 had no activity on tetracycline.Escherichia coliexpressing NR3 were less susceptible to tetracycline, but more susceptible to the nitro compound metronidazole under semi‐aerobic growth conditions.G. lambliaoverexpressing NR1 and NR3, but not lines overexpressing NR2, are more susceptible to the nitro drug nitazoxanide. These findings suggest that NR3 is an active quinone reductase with a mode of action similar to NR1, but different from NR2. The biological function of this family of enzymes may reside in the use of xenobiotics as final electron acceptors. Thereby, these enzymes may provide at least two evolutionary advantages namely a higher potential to recycle NAD(P) as electron acceptors for the (fermentative) energy and intermediary metabolism, and the possibility to inactivate toxic xenobiotics produced by microorganisms living in concurrence inside the intestinal habitat.

     
    more » « less
  5. Zero-mode waveguides (ZMW) have the potential to be powerful confinement tools for studying electron transfer dynamics at single molecule occupancy conditions. Flavin mononucleotide contains an isoalloxazine chromophore, which is fluorescent in the oxidized state (FMN) while the reduced state (FMNH 2 ) exhibits dramatically lower light emission, i.e. a dark-state. This allows fluorescence emission to report the redox state of single FMN molecules, an observation that has been used previously to study single electron transfer events in surface-immobilized flavins and flavoenzymes, e.g. sarcosine oxidase, by direct wide-field imaging of ZMW arrays. Single molecule electron transfer dynamics have now been extended to the study of freely diffusing molecules using fluorescence measurements of Au ZMWs under single occupancy conditions. The Au in the ZMW serves both as an optical cladding layer and as the working electrode for potential control, thereby accessing single molecule electron transfer dynamics at μM concentrations. Consistent with expectations, the probability of observing single reduced molecules increases as the potential is scanned negative, E appl < E eq , and the probability of observing emitting oxidized molecules increases at E appl > E eq . Different single molecules exhibit different electron transfer properties as reflected in the position of E eq and the distribution of E eq among a population of FMN molecules. Two types of actively-controlled electroluminescence experiments were used: chronofluorometry experiments, in which the potential is alternately stepped between oxidizing and reducing potentials, and cyclic potential sweep fluorescence experiments, analogous to cyclic voltammetry, these latter experiments exhibiting a dramatic scan rate dependence with the slowest scan rates showing distinct intermediate states that are stable over a range of potentials. These states are assigned to flavosemiquinone species that are stabilized in the special environment of the ZMW nanopore. 
    more » « less