skip to main content

Title: SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via Cost-Effective Uncomputation
Compiling high-level quantum programs to machines that are size constrained (i.e. limited number of quantum bits) and time constrained (i.e. limited number of quantum operations) is challenging. In this paper, we present SQUARE (Strategic QUantum Ancilla REuse), a compilation infrastructure that tackles allocation and reclamation of scratch qubits (called ancilla) in modular quantum programs. At its core, SQUARE strategically performs uncomputation to create opportunities for qubit reuse. Current Noisy Intermediate-Scale Quantum (NISQ) computers and forward-looking Fault-Tolerant (FT) quantum computers have fundamentally different constraints such as data locality, instruction parallelism, and communication overhead. Our heuristic-based ancilla-reuse algorithm balances these considerations and fits computations into resource-constrained NISQ or FT quantum machines, throttling parallelism when necessary. To precisely capture the workload of a program, we propose an improved metric, the "active quantum volume," and use this metric to evaluate the effectiveness of our algorithm. Our results show that SQUARE improves the average success rate of NISQ applications by 1.47X. Surprisingly, the additional gates for uncomputation create ancilla with better locality, and result in substantially fewer swap gates and less gate noise overall. SQUARE also achieves an average reduction of 1.5X (and up to 9.6X) in active quantum volume for FT machines.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ) computers is to control a quantum system with high-fidelity quantum gates. There are many reasons a quantum gate can go wrong -- for superconducting transmon qubits in particular, one major source of gate error is the unwanted crosstalk between neighboring qubits due to a phenomenon called frequency crowding. We motivate a systematic approach for understanding and mitigating the crosstalk noise when executing near-term quantum programs on superconducting NISQ computers. We present a general software solution to alleviate frequency crowding by systematically tuning qubit frequencies according to input programs, trading parallelism for higher gate fidelity when necessary. The net result is that our work dramatically improves the crosstalk resilience of tunable-qubit, fixed-coupler hardware, matching or surpassing other more complex architectural designs such as tunable-coupler systems. On NISQ benchmarks, we improve worst-case program success rate by 13.3x on average, compared to existing traditional serialization strategies.
  2. Quantum computers are growing in size, and design decisions are being made now that attempt to squeeze more computation out of these machines. In this spirit, we design a method to boost the computational power of near-term quantum computers by adapting protocols used in quantum error correction to implement "Approximate Quantum Error Correction (AQEC)." By approximating fully-fledged error correction mechanisms, we can increase the compute volume (qubits × gates, or "Simple Quantum Volume (SQV)") of near-term machines. The crux of our design is a fast hardware decoder that can approximately decode detected error syndromes rapidly. Specifically, we demonstrate a proof-of-concept that approximate error decoding can be accomplished online in near-term quantum systems by designing and implementing a novel algorithm in Single-Flux Quantum (SFQ) superconducting logic technology. This avoids a critical decoding backlog, hidden in all offline decoding schemes, that leads to idle time exponential in the number of T gates in a program. Our design utilizes one SFQ processing module per physical qubit. Employing state-of-the-art SFQ synthesis tools, we show that the circuit area, power, and latency are within the constraints of contemporary quantum system designs. Under pure dephasing error models, the proposed accelerator and AQEC solution is able tomore »expand SQV by factors between 3,402 and 11,163 on expected near-term machines. The decoder achieves a 5% accuracy-threshold and pseudo-thresholds of ∼ 5%,4.75%,4.5%, and 3.5% physical error-rates for code distances 3,5,7, and 9. Decoding solutions are achieved in a maximum of ∼20 nanoseconds on the largest code distances studied. By avoiding the exponential idle time in offline decoders, we achieve a 10x reduction in required code distances to achieve the same logical performance as alternative designs.« less
  3. Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps havemore »the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE.« less
  4. Quantum computing is on the cusp of reality with Noisy Intermediate-Scale Quantum (NISQ) machines currently under development and testing. Some of the most promising algorithms for these machines are variational algorithms that employ classical optimization coupled with quantum hardware to evaluate the quality of each candidate solution. Recent work used GRadient Descent Pulse Engineering (GRAPE) to translate quantum programs into highly optimized machine control pulses, resulting in a significant reduction in the execution time of programs. This is critical, as quantum machines can barely support the execution of short programs before failing. However, GRAPE suffers from high compilation latency, which is untenable in variational algorithms since compilation is interleaved with computation. We propose two strategies for partial compilation, exploiting the structure of variational circuits to pre-compile optimal pulses for specific blocks of gates. Our results indicate significant pulse speedups ranging from 1.5x-3x in typical benchmarks, with only a small fraction of the compilation latency of GRAPE.
  5. In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct real-system measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. Frommore »these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward.« less