skip to main content

Title: TESS first look at evolved compact pulsators: Discovery and asteroseismic probing of the g -mode hot B subdwarf pulsator EC 21494−7018
Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated more » from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 ± 0.009  M ⊙ ) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (≳2  M ⊙ ) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 ± 0.0010  M ⊙ ), radius (0.1694 ± 0.0081  R ⊙ ), and luminosity (8.2 ± 1.1  L ⊙ ). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494−7018 has burnt ∼43% (in mass) of its central helium and possesses a relatively large mixed core ( M core  = 0.198 ± 0.010  M ⊙ ), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X (O) core = 0.16 +0.13 −0.05 ) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain 12 C( α ,  γ ) 16 O nuclear reaction rate. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1903828
Publication Date:
NSF-PAR ID:
10157676
Journal Name:
Astronomy & Astrophysics
Volume:
632
Page Range or eLocation-ID:
A90
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a P orb = 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star, M sdB = 0.383 ± 0.028 M ⊙ with a massive white dwarf companion, M WDmore »= 0.725 ± 0.026 M ⊙ . From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas our MESA model predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using the MESA stellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92 M ⊙ with a thick helium layer of 0.17 M ⊙ . This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.« less
  2. Abstract Binary systems of a hot subdwarf B (sdB) star + a white dwarf (WD) with orbital periods less than 2–3 hr can come into contact due to gravitational waves and transfer mass from the sdB star to the WD before the sdB star ceases nuclear burning and contracts to become a WD. Motivated by the growing class of observed systems in this category, we study the phases of mass transfer in these systems. We find that because the residual outer hydrogen envelope accounts for a large fraction of an sdB star’s radius, sdB stars can spend a significant amountmore »of time (∼tens of megayears) transferring this small amount of material at low rates (∼10 −10 –10 −9 M ⊙ yr −1 ) before transitioning to a phase where the bulk of their He transfers at much faster rates ( ≳10 −8 M ⊙ yr −1 ). These systems therefore spend a surprising amount of time with Roche-filling sdB donors at orbital periods longer than the range associated with He star models without an envelope. We predict that the envelope transfer phase should be detectable by searching for ellipsoidal modulation of Roche-filling objects with P orb = 30–100 minutes and T eff = 20,000–30,000 K, and that many (≥10) such systems may be found in the Galactic plane after accounting for reddening. We also argue that many of these systems may go through a phase of He transfer that matches the signatures of AM CVn systems, and that some AM CVn systems associated with young stellar populations likely descend from this channel.« less
  3. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert Systemmore »(ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.« less
  4. Context. Pulsation frequencies reveal the interior structures of white dwarf stars, shedding light on the properties of these compact objects that represent the final evolutionary stage of most stars. Two-minute cadence photometry from the Transiting Exoplanet Survey Satellite (TESS) records pulsation signatures from bright white dwarfs over the entire sky. Aims. As part of a series of first-light papers from TESS Asteroseismic Science Consortium Working Group 8, we aim to demonstrate the sensitivity of TESS data, by measuring pulsations of helium-atmosphere white dwarfs in the DBV instability strip, and what asteroseismic analysis of these measurements can reveal about their stellarmore »structures. We present a case study of the pulsating DBV WD 0158−160 that was observed as TIC 257459955 with the two-minute cadence for 20.3 days in TESS Sector 3. Methods. We measured the frequencies of variability of TIC 257459955 with an iterative periodogram and prewhitening procedure. The measured frequencies were compared to calculations from two sets of white dwarf models to constrain the stellar parameters: the fully evolutionary models from LPCODE and the structural models from WDEC . Results. We detected and measured the frequencies of nine pulsation modes and eleven combination frequencies of WD 0158−160 to ∼0.01  μ Hz precision. Most, if not all, of the observed pulsations belong to an incomplete sequence of dipole (ℓ = 1) modes with a mean period spacing of 38.1 ± 1.0 s. The global best-fit seismic models from both LPCODE and WDEC have effective temperatures that are ≳3000 K hotter than archival spectroscopic values of 24 100–25 500 K; however, cooler secondary solutions are found that are consistent with both the spectroscopic effective temperature and distance constraints from Gaia astrometry. Conclusions. Our results demonstrate the value of the TESS data for DBV white dwarf asteroseismology. The extent of the short-cadence photometry enables reliably accurate and extremely precise pulsation frequency measurements. Similar subsets of both the LPCODE and WDEC models show good agreement with these measurements, supporting that the asteroseismic interpretation of DBV observations from TESS is not dominated by the set of models used. However, given the sensitivity of the observed set of pulsation modes to the stellar structure, external constraints from spectroscopy and/or astrometry are needed to identify the best seismic solutions.« less
  5. Context. The recent arrival of continuous photometric observations of unprecedented quality from space missions has strongly promoted the study of pulsating stars and caused great interest in the stellar astrophysics community. In the particular case of pulsating white dwarfs, the TESS mission is taking asteroseismology of these compact stars to a higher level, emulating or even surpassing the performance of its predecessor, the Kepler mission. Aims. We present a detailed asteroseismological analysis of six GW Vir stars that includes the observations collected by the TESS mission. Methods. We processed and analyzed TESS observations of RX J2117+3412 (TIC 117070953), HS 2324+3944more »(TIC 352444061), NGC 6905 (TIC 402913811), NGC 1501 (TIC 084306468), NGC 2371 (TIC 446005482), and K 1−16 (TIC 233689607). We carried out a detailed asteroseismological analysis of these stars on the basis of PG 1159 evolutionary models that take into account the complete evolution of the progenitor stars. We constrained the stellar mass of these stars by comparing the observed period spacing with the average of the computed period spacings, and we employed the individual observed periods to search for a representative seismological model when possible. Results. In total, we extracted 58 periodicities from the TESS light curves of these GW Vir stars using a standard prewhitening procedure to derive the potential pulsation frequencies. All the oscillation frequencies that we found are associated with g -mode pulsations, with periods spanning from ∼817 s to ∼2682 s. We find constant period spacings for all but one star (K 1−16), which allowed us to infer their stellar masses and constrain the harmonic degree ℓ of the modes. Based on rotational frequency splittings, we derive the rotation period of RX J2117+3412, obtaining a value in agreement with previous determinations. We performed period-to-period fit analyses on five of the six analyzed stars. For four stars (RX J2117+3412, HS 2324+3944, NGC 1501, and NGC 2371), we were able to find an asteroseismological model with masses that agree with the stellar mass values inferred from the period spacings and are generally compatible with the spectroscopic masses. Obtaining seismological models allowed us to estimate the seismological distance and compare it with the precise astrometric distance measured with Gaia . Finally, we find that the period spectrum of K 1−16 exhibits dramatic changes in frequency and amplitude that together with the scarcity of modes prevented us from meaningful seismological modeling of this star. Conclusions. The high-quality data collected by the TESS space mission, considered simultaneously with ground-based observations, provide very valuable input to the asteroseismology of GW Vir stars, similar to the case of other classes of pulsating white dwarf stars. The TESS mission, in conjunction with future space missions and upcoming surveys, will make impressive progress in white dwarf asteroseismology.« less