skip to main content


Title: Pressure Induced Wetting and Dewetting of the Nonpolar Pocket of Deep-Cavity Cavitands in Water
Hydrophobic interactions drive the binding of nonpolar ligands to the oily pockets of proteins and supramolecular species in aqueous solution. As such, the wetting of host pockets is expected to play a critical role in determining the thermodynamics of guest binding. Here we use molecular simulations to examine the impact of pressure on the wetting and dewetting of the nonpolar pockets of a series of deep-cavity cavitands in water. The portals to the cavitand pockets are functionalized with both nonpolar (methyl) and polar (hydroxyl) groups oriented pointing either upward or inward toward the pocket. We find wetting of the pocket is favored by the hydroxyl groups and dewetting is favored by the methyl groups. The distribution of waters in the pocket is found to exhibit a two-state-like equilibrium between wet and dry states with a free energy barrier between the two states. Moreover, we demonstrate that the pocket hydration of the cavitands can be collapsed onto a unified adsorption isotherm by assuming the effective pressures within each cavitand pocket differ by a shift pressure that depends on the chemical identity and number of functional groups placed about the portal. These observations support the development of a twostate capillary evaporation model that accurately describes the equilibrium between states and naturally gives rise to the effective shift pressures observed from simulation. This work demonstrates that the hydration of host pockets can be tuned following simple design rules that in turn are expected to impact the thermodynamics of guest complexation.  more » « less
Award ID(s):
1805167
NSF-PAR ID:
10157677
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry B
ISSN:
1520-6106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are many open questions regarding the hydration of solvent-exposed, non-polar tracts and pockets in proteins. Although water is predicted to de-wet purely repulsive surfaces and evacuate crevices, the extent of de-wetting is unclear when ubiquitous van der Waals interactions are in play. The structural simplicity of synthetic supramolecular hosts imbues them with considerable potential to address this issue. To this end, here we detail a combination of densimetry and molecular dynamics simulations of three cavitands, coupled with calorimetric studies of their complexes with short-chain carboxylates. Our results reveal the range of wettability possible within the ostensibly identical cavitand pockets — which differ only in the presence/position of the methyl groups that encircle the portal to their non-polar pockets. The results demonstrate the ability of macrocycles to template water cavitation within their binding sites and show how the orientation of methyl groups can trigger the drying of non-polar pockets in liquid water, suggesting new avenues to control guest complexation. 
    more » « less
  2. Octa-acid (OA) and tetra- endo -methyl octa-acid (TEMOA) are deep cavity cavitands that readily form multimeric complexes with hydrophobic guests, like n -alkanes, in aqueous solution. Experimentally, OA displays a monotonic progression from monomeric to dimeric complexes with n -alkanes of increasing length, while TEMOA exhibits a non-monotonic progression from monomeric, to dimeric, to monomeric, to dimeric complexes over the same range of guest sizes. Previously we have conducted simulations demonstrating this curious behavior arises from the methyl units ringing TEMOA's portal to its hydrophobic pocket barring the possibility for two alkane chains to simultaneously bridge between two hosts in a dimer. Here we expand our prior simulation study to consider the partially methylated hosts mono- endo -methyl octa-acid, 1,3-di- endo -methyl octa-acid, and tri- endo -methyl octa-acid to examine the emergence of non-monotonic assembly behavior. Our simulations demonstrate a systematic progression of non-monotonic assembly with increasing portal methylation. This behavior is traced to the progressive destabilization of 2 : 2 complexes (two hosts assembled with two guests) rather than stabilizing other potential host/guest complexes that could be formed. 
    more » « less
  3. We describe here the effects of metal complexation on the molecular recognition behavior of cavitands with quinoxaline walls. The nitrogen atoms of the quinoxalines are near the upper rim of the vase-like shape and treatment with Pd(II) gave 2:1 metal:cavitand derivatives. Characterization by 1 H, 13 C NMR spectroscopy, HR ESI-MS, and computations showed that the metals bridged adjacent quinoxaline panels and gave cavitands with C 2v symmetry. Both water-soluble and organic-soluble versions were prepared and their host/guest complexes with alkanes, alcohols, acids, and diols (up to C12) were studied by 1 H NMR spectroscopy. Analysis of the binding behavior indicated that the metals rigidified the walls of the receptive vase conformation and enhanced the binding of hydrophobic and even water-soluble guests, compared to related cavitands reported previously. The results demonstrated that the conformational dynamics of the cavitand were slowed by the coordination of Pd(II) and stabilized the host’s complexes. 
    more » « less
  4. The effects on the molecular recognition properties of water-soluble deep cavitand hosts upon embedding them in phosphocholine lipid bilayer environments have been studied by 2D NMR experiments. By employing suitable guests containing 19 F or 13 C nuclei that can be encapsulated inside the host, 2D EXSY NMR experiments can be used to analyze and compare the in/out guest exchange rates in aqueous solution, isotropically tumbling micelles, or magnetically ordered bicelles. These analyses show that embedding the deep cavitands in lipid bilayers slows the guest exchange rate, due to the lipids acting as a “compression sleeve” around the host, restricting guest egress. This effect also enhances guest conformations in the host that are not observed in free solution, such as axial cyclohexane conformers and ketone hydrates. 
    more » « less
  5. Abstract

    We describe the preparation, dynamic, assembly characteristics of vase‐shaped basket13−along with its ability to form an inclusion complex with anticancer drug mitoxantrone in abiotic and biotic systems. This novel cavitand has a deep nonpolar pocket consisting of three naphthalimide sides fused to a bicyclic platform at the bottom while carrying polar glycines at the top. The results of1H Nuclear Magnetic Resonance (NMR),1H NMR Chemical Exchange Saturation Transfer (CEST), Calorimetry, Hybrid Replica Exchange Molecular Dynamics (REMD), and Microcrystal Electron Diffraction (MicroED) measurements are in line with1forming dimer [12]6−, to be in equilibrium with monomers1(R)3−(relaxed) and1(S)3−(squeezed). Through simultaneous line‐shape analysis of1H NMR data, kinetic and thermodynamic parameters characterizing these equilibria were quantified. Basket1(R)3−includes anticancer drug mitoxantrone (MTO2+) in its pocket to give stable binary complex [MTO1](Kd=2.1 μM) that can be precipitated in vitro with UV light or pH as stimuli. Both in vitro and in vivo studies showed that the basket is nontoxic, while at a higher proportion with respect to MTO it reduced its cytotoxicity in vitro. With well‐characterized internal dynamics and dimerization, the ability to include mitoxantrone, and biocompatibility, the stage is set to develop sequestering agents from deep‐cavity baskets.

     
    more » « less