skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extraction and Characterization of Lipids from Macroalgae
Although most algal biofuel research has focused on microalgae, macroalgae are also potential sources of lipid for the production of biodiesel and other liquid fuels. Reliable, accurate methods for assessing the lipid composition of biomass are essential for the development of macroalgae in this area. The conventional methods most commonly used to evaluate lipid composition, such as those of Bligh and Dyer and Folch, do not provide complete extraction of lipids in photosynthetic cells/tissues and therefore do not provide an accurate accounting of lipid production. Here we present a 2-EE lipid extraction protocol, a method which has been demonstrated to be superior to conventional lipid extraction methods for microalgae, adapted for use with macroalgae.  more » « less
Award ID(s):
1755220
PAR ID:
10157683
Author(s) / Creator(s):
Date Published:
Journal Name:
Methods in molecular biology
Issue:
1995
ISSN:
0097-0816
Page Range / eLocation ID:
131-140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biodiesel is an eco-friendly renewable fuel that can be derived from microalgae. Maximization of biomass and lipid productivities are considered the main challenges for algal biodiesel production. Since conventional batch cultures are time-, space-, and reagent-consuming with many restrictions to apply many replicates, microfluidic technology has recently emerged as an alternative low-cost and efficient technology with high throughput repeatability and reproducibility. Different applications of microfluidic devices in algal biotechnology have been reported, including cell identification, sorting, trapping, and metabolic screening. In this work, Chlorella vulgaris was investigated by encapsulating in a simple droplet-based micro-array device at different light intensities of 20, 80, and 200 µmol/m2/s combined with different nitrate concentrations of 17.6, 8.8, and 4.4 mM. The growth results for C. vulgaris within microfluidic device were compared to the conventional batch culture method. In addition, the effect of combined stress of deficiencies in irradiance and nitrogen availability were studied to illustrate their impact on the metabolic profiling of microalgae. The results showed that the most optimum favorable culturing conditions for Chlorella vulgaris growth within the microfluidic channels were 17.6 mM and 80 µmol/m2/s. 
    more » « less
  2. null (Ed.)
    Abstract Diatoms are photosynthetic microalgae that fix a significant fraction of the world’s carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that stimulate both P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae. 
    more » « less
  3. Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y−1of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y−1, seagrasses contribute ~23 Tg C y−1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y−1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2y−1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets. 
    more » « less
  4. Abstract Microalgae are promising biological factories for diverse natural products. Microalgae tout high productivity, and their biomass has value in industrial products ranging from biofuels, feedstocks, food additives, cosmetics, pharmaceuticals, and as alternatives to synthetic or animal‐derived products. However, harvesting microalgae to extract bioproducts is challenging given their small size and suspension in liquid growth media. In response, technologic developments have relied upon mechanical, chemical, thermal, and biological means to dewater microalgal suspensions and further extract bioproducts. In this review, the effectiveness and considerations were evaluated for the implementation of microalgae harvesting techniques. Nonbiological methods—filtration, chemical, electrical, and magnetic nanoparticle flocculation, centrifugation, hydrothermal liquefaction, and solvent‐based extraction, as well as biological coculture‐based methods are included. Recent advances in coculture algae‐flocculation technologies that involve bacteria and fungi are summarized. These produce a variety of natural bioproducts, which show promise in fuel and food additive applications. Furthermore, this review addresses the developments of genetic tools and resources to optimize the productivity and harvesting of microalgae or to provide new bioproducts via heterologous expression. Finally, a glimpse of future biotechnologies that will converge to produce, harvest, and process microalgae using sustainable and cost‐effective methods is offered. 
    more » « less
  5. Increasing the production of renewable energy will be critical to achieving global sustainability goals in the coming decades. Biofuels derived from microalgae have great potential to contribute to this production. However, cultivating algae with sufficient neutral lipid content, while maintaining high growth rates, is a continual challenge in making algal-derived biofuels a reality. Previous work has shown that exposure to polymer-functionalized carbon dots can increase the lipid content of the microalgaeRaphidocelis subcapitata. This study investigates this finding, aiming to determine the mechanisms underlying this effect and if altering nanoparticle surface charge mediates the mechanism of action of the carbon dots used. Carbon dots with both negative and positive surface charges were added to microalgal cultures, and the impacts of this exposure were analyzed using high-content imaging, growth measurements, and chlorophyll content measurements. Results indicate that positively charged carbon dots induce a nano-specific increase in lipid content but also cause decreases in growth. Additionally, the mechanism of action of each nanoparticle was examined by conducting a morphological comparison to treatments with known mechanisms of action. This analysis showed that negatively charged carbon dots cause similar impacts toR. subcapitataas nitrogen deprivation. Nitrogen deprivation is known to increase lipid content in microalgae. The findings of this study suggest that carbon dots may have surface charge dependent effects on the lipid metabolism ofR. subcapitata. Future work should consider the use of carbon dots with varied surface charge densities for enhancing algae biofuel production in bioreactors. 
    more » « less