Abstract We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes.
more »
« less
Seafloor primary production in a changing Arctic Ocean
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y−1of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y−1, seagrasses contribute ~23 Tg C y−1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y−1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2y−1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
more »
« less
- PAR ID:
- 10498923
- Publisher / Repository:
- PNAS Perspective
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 11
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.more » « less
-
Abstract The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors.more » « less
-
Macroalgae form important coastal ecosystems and are considered to be highly productive, yet individual macrophyte carbon uptake rates are poorly documented and methodologies forin situassessments of productivity are not well developed. In this study, we employ a13C enrichment method in benthic chambers to calculate carbon uptake rates and assessδ13C signatures of a large stock of nearshore benthic macroalgae varying in taxa and morphology in Southern California. Our objectives are to 1) identify the variability of carbon uptake and inorganic carbon use among individuals of the same species or morphology, and 2) establish accurate and accessible carbon uptake procedures for coastal benthic primary producers. We found no significant relationship between the observed ranges of environmental factors such as nutrient concentrations, PAR, temperature, conductivity, and productivity rates, suggesting that unique physiological complexions underpin the high variability of carbon uptake andδ13C in studied macrophyte samples. We consider three reasons our experimental carbon uptake rates are 3–4 orders of magnitude lower than existing literature, which reports carbon uptake in the same units despite using different methods: 1) underrepresentation ofPmax, 2) incomplete carbon fractionation corrections, and 3) reduced hydrodynamics within the benthic chambers.more » « less
-
Diatoms are key primary producers across marine, freshwater, and terrestrial ecosystems. They are responsible for photosynthesis and secondary production that, in part, support complex food webs. Diatoms can produce phytochemicals that have transtrophic ecological effects which increase their competitive fitness. Polyunsaturated aldehydes (PUAs) are one class of diatom-derived phytochemicals that are known to have allelopathic and anti-herbivory properties. The anti-herbivory capability of PUAs results from their negative effect on grazer fecundity. Since their discovery, research has focused on their production by pelagic marine diatoms, and their effects on copepod egg production, hatching success, and juvenile survival and development. Few investigations have explored PUA production by the prolific suite of benthic marine diatoms, despite their importance to coastal trophic systems. In this study, we tested eight species of benthic diatoms for the production of the bioactive PUAs 2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal. Benthic diatom species were isolated from the Salish Sea, an inland sea within the North Pacific ecosystem. All species were found to be producers of at least two PUAs in detectable concentrations, with five species producing all three PUAs in quantifiable concentrations. Our results indicate that production of PUAs from Salish Sea benthic diatoms may be widespread, and thus these compounds may contribute to benthic coastal food web dynamics through heretofore unrecognized pathways. Future studies should expand the geographic scope of investigations into benthic diatom PUA production and explore the effects of benthic diatoms on benthic consumer fecundity.more » « less
An official website of the United States government

