A computational study was performed both of a single agglomerate and of the collision of two agglomerates in a shear flow. The agglomerates were extracted from a direct numerical simulation of a turbulent agglomeration process, and had the loosely packed fractal structure typical of agglomerate structures formed in turbulent agglomeration processes. The computation was performed using a discrete-element method for adhesive particles with four-way coupling, accounting both for forces between the fluid and the particles (and vice versa ) as well as force transmission directly between particles via particle collisions. In addition to understanding and characterizing the particle dynamics, the study focused on illuminating the fluid flow field induced by the agglomerate in the presence of a background shear and the effect of collisions on this particle-induced flow. Perhaps the most interesting result of the current work was the observation that the flow field induced by a particle agglomerate rotating in a shear flow has the form of two tilted vortex rings with opposite-sign circulation. These rings are surrounded by a sea of stretched vorticity from the background shear flow. The agglomerate rotates in the shear flow, but at a slower rate than the ambient fluid elements. In the computations with two colliding agglomerates, we observed cases resulting in agglomerate merger, bouncing and fragmentation. However, the bouncing cases were all observed to also result in an exchange of particles between the two colliding agglomerates, so that they were influenced both by elastic rebound of the agglomerate structures as well as by tearing away of particulate matter between the agglomerates. Overall, the problems of agglomerate–flow interaction and of the collision of two agglomerates in a shear flow are considerably richer in physical phenomena and more complex than can be described by the common approximation that represents each agglomerate by an ‘equivalent sphere’.
more »
« less
Oblique collisions of three wet spheres
Oblique collisions of three solid spheres coated with thin viscous layers are simulated, both to elucidate the interesting physics of the collision outcomes and to lay the groundwork for a new approach to modeling flows of many wet particles. Included in the analysis are fluid viscous and capillary forces, as well as solid contact and friction forces. A novel approach is developed based on a rotating polar coordinate system for each particle pair in near contact, including the possibility that a given particle is in simultaneous contact with both other particles. As the Stokes number (a dimensionless ratio of particle inertia and viscous forces) is increased, the collision outcome progresses from full agglomeration (all three particles sticking together due to viscous and capillary forces) to partial agglomeration (two particles sticking together while the third one separates) to full separation (all three particles separating post-collision). The results are also sensitive to various physical and geometrical properties, such as the ratio of fluid film thickness to particle diameter, the coefficient of friction, and the collision angles.
more »
« less
- Award ID(s):
- 2301910
- PAR ID:
- 10499268
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 1070-6631
- Page Range / eLocation ID:
- 103328
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we study the dynamics of an incompressible viscous fluid evolving in an open-top container in two dimensions. The fluid mechanics are dictated by the Navier–Stokes equations. The upper boundary of the fluid is free and evolves within the container. The fluid is acted upon by a uniform gravitational field, and capillary forces are accounted for along the free boundary. The triple-phase interfaces where the fluid, air above the vessel, and solid vessel wall come in contact are called contact points, and the angles formed at the contact point are called contact angles. The model that we consider integrates boundary conditions that allow for full motion of the contact points and angles. Equilibrium configurations consist of quiescent fluid within a domain whose upper boundary is given as the graph of a function minimizing a gravity-capillary energy functional, subject to a fixed mass constraint. The equilibrium contact angles can take on any values between 0 and\pidepending on the choice of capillary parameters. The main thrust of the paper is the development of a scheme of a priori estimates that show that solutions emanating from data sufficiently close to the equilibrium exist globally in time and decay to equilibrium at an exponential rate.more » « less
-
The behavior of permeable, elastic particles sliding along a repulsive wall is examined computationally. It is found that particles will stick or slip depending on the interplay of elastohydrodynamic and repulsive forces, and the flow in the porous particle. Particles slip when either the elastohydrodynamic lift or repulsive forces are large and create a supporting lubricating film of fluid. However, for lower values of elastohydrodynamic lift or repulsive forces, the flow within the porous particle reduces the pressure in the thin film, resulting in the particles making contact and sticking to the surface. The criteria for the slip-stick transition is presented, which can be used to design systems to promote or suppress slip for such suspensions.more » « less
-
At the appropriate length scales, capillary forces exerted by a liquid in contact with a compliant solid can cause the solid's deformation. Capillary forces are also able to align particles with discrete wettabilities – or Janus particles – at liquid interfaces. Their amphiphilic properties enable Janus particles to orient themselves at liquid interfaces such that both of their surfaces are facing their preferred fluid. However, it is unclear how to spontaneously obtain varying degrees of rotational alignment. Here we extend ideas of elasto-capillarity to modulate rotational alignment by connecting amphiphilic Janus cylinders in an antisymmetric configuration. As the Janus cylinders rotate they cause a twisting deformation of rod. We develop both a mathematical model and a physical macroscale setup to relate the angle of twist to the elastic and interfacial properties, which can be used to tune the extent of alignment of Janus particles at air–water interfaces. We additionally extend our analysis to calculate the twist profile on a compliant element with a distributed capillary torque.more » « less
-
In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly.more » « less
An official website of the United States government

