skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Use of NLDAS2 Weather Data for Hydrologic Modeling in the Upper Mississippi River Basin
Weather data are the key forces that drive hydrological processes so that their accuracy in watershed modeling is fundamentally important. For large-scale watershed modeling, weather data are either generated by using interpolation methods or derived from assimilated datasets. In the present study, we compared model performances of the Soil and Water Assessment Tool (SWAT), as driven by interpolation weather data, and NASA North American Land Data Assimilation System Phase Two (NLDAS2) weather dataset in the Upper Mississippi River Basin (UMRB). The SWAT model fed with different weather datasets were used to simulate monthly stream flow at 11 United States Geological Survey (USGS) monitoring stations in the UMRB. Model performances were evaluated based on three metrics: coefficient of determination (R2), Nash–Sutcliffe coefficient (NS), and percent bias (Pbias). The results show that, after calibration, the SWAT model compared well at all monitoring stations for monthly stream flow using different weather datasets indicating that the SWAT model can adequately produce long-term water yield in UMRB. The results also show that using NLDAS2 weather dataset can improve SWAT prediction of monthly stream flow with less prediction uncertainty in the UMRB. We concluded that NLDAS2 dataset could be used by the SWAT model for large-scale watersheds like UMRB as a surrogate of the interpolation weather data. Further analyses results show that NLDAS2 daily solar radiation data was about 2.5 MJ m−2 higher than the interpolation data. As such, the SWAT model driven by NLDAS2 dataset tended to underestimate stream flow in the UMRB due to the overestimation in evapotranspiration in uncalibrated conditions. Thus, the implication of overestimated solar radiation by NLDAS2 dataset should be considered before using NLDAS2 dataset to drive the hydrological model.  more » « less
Award ID(s):
1639327
PAR ID:
10157802
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Water
Volume:
11
Issue:
5
ISSN:
2073-4441
Page Range / eLocation ID:
960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Data limitations often challenge the reliability of water quality models, especially in intensively managed watersheds. While numerous studies report successful hydrological model setup and calibration, few have addressed in detail the data challenges for multisite and multivariable model calibration to an intensively managed watershed. In this study, we address some of these challenges based on our reflective experience calibrating the Soil and Water Assessment Tool (SWAT) to the Upper Sangamon River Watershed in central Illinois based on daily flow, annual crop yield, and monthly sediment, nitrate, and total phosphorus loads. We highlight some challenges in SWAT calibration processes due to data errors and inconsistencies, and insufficient precipitation and water quality observations. Following, we demonstrate the merits of additional weather and water quality observations that could help reduce input uncertainties, and we provide suggestions for selecting appropriate observations for the model calibration. After dealing with the data issues, we show that the SWAT model could be calibrated with acceptable results for the case study watershed. 
    more » « less
  2. Thenkabail, Prasad S. (Ed.)
    Physically based hydrologic models require significant effort and extensive information for development, calibration, and validation. The study explored the use of the random forest regression (RFR), a supervised machine learning (ML) model, as an alternative to the physically based Soil and Water Assessment Tool (SWAT) for predicting streamflow in the Rio Grande Headwaters near Del Norte, a snowmelt-dominated mountainous watershed of the Upper Rio Grande Basin. Remotely sensed data were used for the random forest machine learning analysis (RFML) and RStudio for data processing and synthesizing. The RFML model outperformed the SWAT model in accuracy and demonstrated its capability in predicting streamflow in this region. We implemented a customized approach to the RFR model to assess the model’s performance for three training periods, across 1991–2010, 1996–2010, and 2001–2010; the results indicated that the model’s accuracy improved with longer training periods, implying that the model trained on a more extended period is better able to capture the parameters’ variability and reproduce streamflow data more accurately. The variable importance (i.e., IncNodePurity) measure of the RFML model revealed that the snow depth and the minimum temperature were consistently the top two predictors across all training periods. The paper also evaluated how well the SWAT model performs in reproducing streamflow data of the watershed with a conventional approach. The SWAT model needed more time and data to set up and calibrate, delivering acceptable performance in annual mean streamflow simulation, with satisfactory index of agreement (d), coefficient of determination (R2), and percent bias (PBIAS) values, but monthly simulation warrants further exploration and model adjustments. The study recommends exploring snowmelt runoff hydrologic processes, dust-driven sublimation effects, and more detailed topographic input parameters to update the SWAT snowmelt routine for better monthly flow estimation. The results provide a critical analysis for enhancing streamflow prediction, which is valuable for further research and water resource management, including snowmelt-driven semi-arid regions. 
    more » « less
  3. Abstract Small streams often lack reliable hydrological data. Environmental agencies play a key role in providing such data; however, these agencies are often challenged by the growing monitoring needs and lack of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen science program that collects stream stage and stream temperature observations, improves a hydrologic model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with different interarrival times of the observations. We tested whether stream stage and stream temperature observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool (SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman filter. This framework allowed us to integrate observation error, track the variability of model parameters, and simulate daily streamflow and stream temperature across the watershed. Measures of daily model performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (Ef‐mod), refined index of agreement (dr), and relative bias (Bias). For all calibration sites, estimates of streamflow improved after data assimilation compared to simulations based on initial/default SWAT parameters. Different measures of model performance emerged based on the interarrival times of the observations. Results demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve SWAT hydrological models and capture central tendency. 
    more » « less
  4. Accurate prediction of water flow is of utmost importance, particularly for ensuring water supply and informing early actions for floods and droughts. Existing flow prediction methods rely on the input of weather drivers, which hinders their applicability to monitoring small headwater streams due to the limited spatial resolution of existing weather datasets. This paper introduces a new dataset with frequent imagery on streams for water monitoring tasks. Our objective is to automatically predict streamflow for each stream site using frequent images taken at a sub-hourly scale. To overcome the challenge of limited labels for certain stream sites, we employ knowledge transfer from well-observed sites to poorly-observed sites via domain adaptation. As each stream site involves highly variable time series data over long periods, we introduce a novel method STCGAN (Spatial-Temporal Cycle Generative Adversarial Network), which incorporates temporal context by conditioning on the sequence's time and learns overall trends of stream flow variation. It integrates the predictive modeling of streamflow with the cyclic generative process and enhances the prediction with data augmentation using generated synthetic samples. Our experiments demonstrate superior performance of the proposed method using data collected from the West Brook area located in western Massachusetts, US. The proposed method can be further extended to selectively combine information from multiple well-observed stream sites, leading to improved overall performance. 
    more » « less
  5. Abstract Efforts to reduce riverine phosphorus (P) loads have not been as fruitful as expected or hoped. One reason for the failure of these efforts appears to be that models used for watershed P management have understated and misrepresented the role of in‐stream processes in shaping watershed P export. Here, we update the latest release of the Soil and Water Assessment Tool (SWAT+), a widely used watershed management model, to better represent in‐stream P retention and remobilization (SWAT+P.R&R). We add new streambed pools where P is stored and tracked, and we incorporate three new processes driving in‐stream P dynamics: (a) deposition and resuspension of sediment‐associated P, (b) diffusion of dissolved P between the water column and streambed, and (c) adsorption and desorption of mineral P. The objective of this modeling work is to provide a diagnostic tool that enables researchers to challenge existing assumptions regarding how watersheds store, transform, and transport P. Here, in a first diagnostic analysis, SWAT+P.R&R helps reconcile in‐stream P retention theory (that P is retained at low flows and remobilized at high flows) and a discordant data set in our validation watershed. SWAT+P.R&R results (a) clarify that the theorized relationship between P retention and flow is only valid (for this point‐source affected testbed, at least) at the temporal scale of a single rising‐or‐falling hydrograph limb and (b) illustrate that hysteresis obscures the relationship at longer temporal scales. Future work using SWAT+P.R&R could further challenge assumptions regarding timescales of in‐stream P legacies and sources of P load variability. 
    more » « less