Abstract Effective flood prediction supports developing proactive risk management strategies, but its application in ungauged basins faces tremendous challenges due to limited/no streamflow record. This study investigates the potential for integrating streamflow derived from synthetic aperture radar (SAR) data and U.S. National Water Model (NWM) reanalysis estimates to develop improved predictions of above-normal flow (ANF) over the coterminous US. Leveraging the SAR data from the Global Flood Detection System to estimate the antecedent conditions using principal component regression, we apply the spatial-temporal hierarchical model (STHM) using NWM outputs for improving ANF prediction. Our evaluation shows promising results with the integrated model, STHM-SAR, significantly improving NWE, especially in 60% of the sites in the coastal region. Spatial and temporal validations underscore the model’s robustness, with SAR data contributing to explained variance by 24% on average. This approach not only improves NWM prediction, but also uniquely combines existing remote sensing data with national-scale predictions, showcasing its potential to improve hydrological modeling, particularly in regions with limited stream gauges.
more »
« less
Spatial-Temporal Augmented Adaptation via Cycle-Consistent AdversarialNetwork: An Application in Streamflow Prediction
Accurate prediction of water flow is of utmost importance, particularly for ensuring water supply and informing early actions for floods and droughts. Existing flow prediction methods rely on the input of weather drivers, which hinders their applicability to monitoring small headwater streams due to the limited spatial resolution of existing weather datasets. This paper introduces a new dataset with frequent imagery on streams for water monitoring tasks. Our objective is to automatically predict streamflow for each stream site using frequent images taken at a sub-hourly scale. To overcome the challenge of limited labels for certain stream sites, we employ knowledge transfer from well-observed sites to poorly-observed sites via domain adaptation. As each stream site involves highly variable time series data over long periods, we introduce a novel method STCGAN (Spatial-Temporal Cycle Generative Adversarial Network), which incorporates temporal context by conditioning on the sequence's time and learns overall trends of stream flow variation. It integrates the predictive modeling of streamflow with the cyclic generative process and enhances the prediction with data augmentation using generated synthetic samples. Our experiments demonstrate superior performance of the proposed method using data collected from the West Brook area located in western Massachusetts, US. The proposed method can be further extended to selectively combine information from multiple well-observed stream sites, leading to improved overall performance.
more »
« less
- PAR ID:
- 10504015
- Publisher / Repository:
- SIAM
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Accurate prediction of water quality and quantity is crucial for sustainable development and human well-being. However, existing data-driven methods often suffer from spatial biases in model performance due to heterogeneous data, limited observations, and noisy sensor data. To overcome these challenges, we propose Fair-Graph, a novel graph-based recurrent neural network that leverages interrelated knowledge from multiple rivers to predict water flow and temperature within large-scale stream networks. Additionally, we introduce node-specific graph masks for information aggregation and adaptation to enhance prediction over heterogeneous river segments. To reduce performance disparities across river segments, we introduce a centralized coordination strategy that adjusts training priorities for segments. We evaluate the prediction of water temperature within the Delaware River Basin, and the prediction of streamflow using simulated data from U.S. National Water Model in the Houston River network. The results showcase improvements in predictive performance and highlight the proposed model's ability to maintain spatial fairness over different river segments.more » « less
-
ABSTRACT The importance of subsurface water dynamics, such as water storage and flow partitioning, is well recognised. Yet, our understanding of their drivers and links to streamflow generation has remained elusive, especially in small headwater streams that are often data‐limited but crucial for downstream water quantity and quality. Large‐scale analyses have focused on streamflow characteristics across rivers with varying drainage areas, often overlooking the subsurface water dynamics that shape streamflow behaviour. Here we ask the question:What are the climate and landscape characteristics that regulate subsurface dynamic storage, flow path partitioning, and dynamics of streamflow generation in headwater streams?To answer this question, we used streamflow data and a widely‐used hydrological model (HBV) for 15 headwater catchments across the contiguous United States. Results show that climate characteristics such as aridity and precipitation phase (snow or rain) and land attributes such as topography and soil texture are key drivers of streamflow generation dynamics. In particular, steeper slopes generally promoted more streamflow, regardless of aridity. Streams in flat, rainy sites (< 30% precipitation as snow) with finer soils exhibited flashier regimes than those in snowy sites (> 30% precipitation as snow) or sites with coarse soils and deeper flow paths. In snowy sites, less weathered, thinner soils promoted shallower flow paths such that discharge was more sensitive to changes in storage, but snow dampened streamflow flashiness overall. Results here indicate that land characteristics such as steepness and soil texture modify subsurface water storage and shallow and deep flow partitioning, ultimately regulating streamflow response to climate forcing. As climate change increases uncertainty in water availability, understanding the interacting climate and landscape features that regulate streamflow will be essential to predict hydrological shifts in headwater catchments and improve water resources management.more » « less
-
Abstract Small streams often lack reliable hydrological data. Environmental agencies play a key role in providing such data; however, these agencies are often challenged by the growing monitoring needs and lack of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen science program that collects stream stage and stream temperature observations, improves a hydrologic model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with different interarrival times of the observations. We tested whether stream stage and stream temperature observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool (SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman filter. This framework allowed us to integrate observation error, track the variability of model parameters, and simulate daily streamflow and stream temperature across the watershed. Measures of daily model performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (Ef‐mod), refined index of agreement (dr), and relative bias (Bias). For all calibration sites, estimates of streamflow improved after data assimilation compared to simulations based on initial/default SWAT parameters. Different measures of model performance emerged based on the interarrival times of the observations. Results demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve SWAT hydrological models and capture central tendency.more » « less
-
Abstract Intermittent and ephemeral streams in dryland environments support diverse assemblages of aquatic and terrestrial life. Understanding when and where water flows provide insights into the availability of water, its response to external controlling factors, and potential sensitivity to climate change and a host of human activities. Knowledge regarding the timing of drying/wetting cycles can also be useful to map critical habitats for species and ecosystems that rely on these temporary water sources. However, identifying the locations and monitoring the timing of streamflow and channel sediment moisture remains a challenging endeavor. In this paper, we analyzed daily conductivity from 37 sensors distributed along 10 streams across an arid mountain front in Arizona (United States) to assess spatiotemporal patterns in flow permanence, defined as the timing and extent of water in streams. Conductivity sensors provide information on surface flow and sediment moisture, supporting a stream classification based on seasonal flow dynamics. Our results provide insight into flow responses to seasonal rainfall, highlighting stream reaches very reactive to rainfall versus those demonstrating more stable streamflow. The strength of stream responses to precipitation are explored in the context of surficial geology. In summary, conductivity data can be used to map potential stream habitat for water‐dependent species in both space and time, while also providing the basis upon which sensitivity to ongoing climate change can be evaluated.more » « less