skip to main content


Title: Effect of thermal treatment on the structure and gas transport properties of a triptycene-based polybenzoxazole exhibiting configurational free volume
The effect of thermal treatment at 220 °C for 10 days on the structure and transport properties of a triptycene-based polybenzoxazole (TPBO) was investigated experimentally and theoretically. Gas and water vapor sorption in TPBO is virtually unaffected by thermal treatment, while diffusion and permeability coefficients decrease by just 20%. Remarkably, the CO2/CH4 selectivity exhibit a negligible change. Fluorescence spectroscopy, WAXD and FTIR analysis indicate that, in sharp contrast with typical behavior of glassy polymers, TPBO does not experience accelerated physical aging, and rule out formation of intermolecular charge transfer complexes upon thermal treatment. According with this physical picture, the diffusion coefficient of penetrant molecules sorbed in the Langmuir's mode, DH, does not change after treatment. Small molecule diffusivity and permeability decline is caused by a decrease in polymer chain mobility, which makes more difficult opening gaps to allow penetrant diffusion jumps. According to this picture, the Henry's mode diffusion coefficient, DD, substantially decreases upon thermal treatment. The higher stability exhibited by TPBO relative to other high Tg glassy polymers is ascribed to the presence of configurational free volume, which is not related to the non-equilibrium transient conformation, but to the molecular configuration and, as such, it is not relaxed upon protracted exposure to high temperatures.  more » « less
Award ID(s):
1926868
NSF-PAR ID:
10158001
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of membrane science
Volume:
597
Issue:
1
ISSN:
0376-7388
Page Range / eLocation ID:
117759
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glassy polymers are often used for gas separations because of their high selectivity. Although the dual‐mode permeation model correctly fits their sorption and permeation isotherms, its physical interpretation is disputed, and it does not describe permeation far from steady state, a condition expected when separations involve intermittent renewable energy sources. To develop a more comprehensive permeation model, we combine experiment, molecular dynamics, and multiscale reaction–diffusion modeling to characterize the time‐dependent permeation of N2and CO2through a glassy poly(dimethyl phenylene oxide) membrane, a model system. Simulations of experimental time‐dependent permeation data for both gases in the presteady‐state and steady‐state regimes show that both single‐ and dual‐mode reaction–diffusion models reproduce the experimental observations, and that sorbed gas concentrations lag the external pressure rise. The results point to environment‐sensitive diffusion coefficients as a vital characteristic of transport in glassy polymers.

     
    more » « less
  2. The framework of Representative Key Risks (RKRs) has been adopted by the Intergovernmental Panel on Climate Change Working Group II (WGII) to categorize, assess and communicate a wide range of regional and sectoral key risks from climate change. These are risks expected to become severe due to the potentially detrimental convergence of changing climate conditions with the exposure and vulnerability of human and natural systems. Other papers in this special issue treat each of eight RKRs holistically by assessing their current status and future evolution as a result of this convergence. However, in these papers, such assessment cannot always be organized according to a systematic gradation of climatic changes. Often the big-picture evolution of risk has to be extrapolated from either qualitative effects of “low”, “medium” and “high” warming, or limited/focused analysis of the consequences of particular mitigation choices (e.g., benefits of limiting warming to 1.5 or 2C), together with consideration of the socio-economic context and possible adaptation choices. In this study we offer a representation – as systematic as possible given current literature and assessments – of the future evolution of the hazard components of RKRs. We identify the relevant hazards for each RKR, based upon the WGII authors’ assessment, and we report on their current state and expected future changes in magnitude, intensity and/or frequency, linking these changes to Global Warming Levels (GWLs) to the extent possible. We draw on the assessment of changes in climatic impact-drivers relevant to RKRs described in the 6th Assessment Report by Working Group I supplemented when needed by more recent literature. For some of these quantities - like regional trends in oceanic and atmospheric temperature and precipitation, some heat and precipitation extremes, permafrost thaw and Northern Hemisphere snow cover - a strong and quantitative relationship with increasing GWLs has been identified. For others - like frequency and intensity of tropical cyclones and extra-tropical storms, and fire weather - that link can only be described qualitatively. For some processes - like the behavior of ice sheets, or changes in circulation dynamics - large uncertainties about the effects of different GWLs remain, and for a few others - like ocean pH and air pollution - the composition of the scenario of anthropogenic emissions is most relevant, rather than the warming reached. In almost all cases, however, the basic message remains that every small increment in CO2 concentration in the atmosphere and associated warming will bring changes in climate phenomena that will contribute to increasing risk of impacts on human and natural systems, in the absence of compensating changes in these systems’ exposure and vulnerability, and in the absence of effective adaptation. Our picture of the evolution of RKR-relevant climatic impact-drivers complements and enriches the treatment of RKRs in the other papers in at least two ways: by filling in their often only cursory or limited representation of the physical climate aspects driving impacts, and by providing a fuller representation of their future potential evolution, an important component – if never the only one – of the future evolution of risk severity. 
    more » « less
  3. X-ray scattering has been used to characterize the columnar packing and the π stacking in a glass-forming discotic liquid crystal. In the equilibrium liquid state, the intensities of the scattering peaks for π stacking and columnar packing are proportional to each other, indicating concurrent development of the two orders. Upon cooling into the glassy state, the π–π distance shows a kinetic arrest with a change in the thermal expansion coefficient (TEC) from 321 to 109 ppm/K, while the intercolumnar spacing exhibits a constant TEC of 113 ppm/K. By changing the cooling rate, it is possible to prepare glasses with a wide range of columnar and π stacking orders, including zero order. For each glass, the columnar order and the π stacking order correspond to a much hotter liquid than its enthalpy and π–π distance, with the difference between the two internal (fictive) temperatures exceeding 100 K. By comparison with the relaxation map obtained by dielectric spectroscopy, we find that the δ mode (disk tumbling within a column) controls the columnar order and the π stacking order trapped in the glass, while the α mode (disk spinning about its axis) controls the enthalpy and the π–π spacing. Our finding is relevant for controlling the different structural features of a molecular glass to optimize its properties. 
    more » « less
  4. Abstract

    Polymers are a unique class of materials from the perspective of normal mode analysis. Polymers consist of individual chains with repeating units and strong intra-chain covalent bonds, and amorphous arrangements among chains with weak inter-chain van der Waals and for some polymers also electrostatic interactions. Intuitively, this strong heterogeneity in bond strength can give rise to special features in the constituent phonons, but such effects have not been studied deeply before. Here, we use lattice dynamics and molecular dynamics to perform modal analysis of the thermal conductivity in amorphous polymers. We find an abnormally large population of localized modes in amorphous polymers, which is fundamentally different from amorphous inorganic materials. Contrary to the common picture of thermal transport, localized modes in amorphous polymers are found to be the dominant contributors to thermal conductivity. We find that a significant portion of the localization happens within individual chains, but heat is dominantly conducted when localized modes involve two chains. These results suggest localized modes generally play a key role in thermal transport for different polymers. The results provide an alternative perspective on why polymer thermal conductivity is generally quite low and gives insight into how to potentially change it.

     
    more » « less
  5. ABSTRACT

    The properties of thin supported polymer films can be dramatically impacted by the substrate upon which it resides. A simple way to alter the properties of the substrate (chemistry, rigidity, dynamics) is by coating it with an immiscible polymer. Here, we describe how ultrathin (ca. 2 nm) hydrophilic polymer layers of poly(acrylic acid) and poly(styrene sulfonate) (PSS) impact the aging behavior and the residual stress in thin films of poly(butylnorbornene‐ran‐hydroxyhexafluoroisopropyl norbornene) (BuNB‐r‐HFANB). The aging rate decreases as the film thickness (h) is decreased, but the extent of this change depends on the adjacent layer. Even for the thickest films (h > 500 nm), there is a decrease in the aging rate at 100 °C when BuNB‐r‐HFANB is in contact with PSS. In an effort to understand the origins of these differences in the aging behavior, the elastic modulus and residual stress (σR) in the films were determined by wrinkling as a function of aging time. The change in the elastic modulus during aging does not appear to be directly correlated with the densification or expansion of the films, but the aging rates appear to roughly scale ashσR1/3. These results illustrate that the physical aging of thin polymer films can be altered by adjacent polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 992–1000

     
    more » « less