skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fiber spinning from polymer solutions
The thinning of a cylinder of a polymer solution in a volatile solvent is argued to be controlled by solvent diffusion through a dense polymer layer at the cylinder surface. This naturally leads to the exponential time dependence of cylinder radius that is observed in experiments using a fast camera, such as capillary breakup extensional rheometry (CaBER). The relaxation time is controlled by the thickness of the dense (and often glassy) polymer layer and the diffusion coefficient of solvent through that layer. If correct, this means that while CaBER is very useful for understanding fiber spinning, the relaxation time does not yield a measure of the extensional viscosity of polymer solutions in volatile solvents.  more » « less
Award ID(s):
2203746
PAR ID:
10514639
Author(s) / Creator(s):
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Rheology
Volume:
67
Issue:
6
ISSN:
0148-6055
Page Range / eLocation ID:
1251 to 1255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extensional flow properties of polymer solutions in volatile solvents govern many industrially-relevant coating processes, but existing instrumentation lacks the environment necessary to control evaporation. To mitigate evaporation during dripping-onto-substrate (DoS) extensional rheology measurements, we developed a chamber to enclose the sample in an environment saturated with solvent vapor. We validated the evaporation-controlled DoS device by measuring a model high molecular weight polyethylene oxide (PEO) in various organic solvents both inside and outside of the chamber. Evaporation substantially increased the extensional relaxation time$$\lambda _{E}$$ λ E for PEO in volatile solvents like dichloromethane and chloroform. PEO/chloroform solutions displayed an over 20-fold increase in$$\lambda _{E}$$ λ E due to the formation of an evaporation-induced surface film; evaporation studies confirmed surface features and skin formation reminiscent of buckling instabilities commonly observed in drying polymer solutions. Finally, the relaxation times of semi-dilute PEO/chloroform solutions were measured with environmental control, where$$\lambda _{E}$$ λ E scaled with concentration by the exponent$$m=0.62$$ m = 0.62 . These measurements validate the evaporation-controlled DoS environment, and confirm that chloroform is a good solvent for PEO, with a Flory exponent of$$\nu =0.54$$ ν = 0.54 . Our results are the first to control evaporation during DoS extensional rheology, and provide guidelines establishing when environmental control is necessary to obtain accurate rheological parameters. 
    more » « less
  2. Polymer solution processability in extensional-flow dominated operations is strongly influenced by polymer conformation and solution phase behavior. Cosolvent addition can be used to tailor polymer conformation and solution phase behavior to yield formulations that are amenable to processes such as spraying and atomization, coating, and fiber spinning. The addition of N,N-dimethylformamide (DMF) to aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions induces unique phase behavior and microstructure formation, yet the effects on solution processability have remained unexplored. In this work, the effect of DMF cosolvent content on the rheology (both shear and extensional) and microstructure of PNIPAM solutions is investigated. While all examined PNIPAM solutions exhibit nearly Newtonian steady shear behavior regardless of DMF content, the same solutions exhibit varying degrees of extensibility. Surprisingly, the extensional relaxation time increases by more than twenty-fold with increasing DMF content in the water-rich regime. In the DMF-rich regime, however, solution extensibility dramatically decreases. Interestingly, this unique variation in extensional flow behavior does not scale as expected based on changes in the measured intrinsic viscosity and radius of gyration. Instead, a mechanism is proposed that relates the extensional flow behavior to the solution microstructure, which is found to vary with DMF content in light scattering measurements. In the water-rich regime, DMF molecules are proposed to bridge PNIPAM chains via hydrogen bonding and hydrophobic interactions, resulting in physically crosslinked aggregates. In extensional flows, these aggregates behave like a polymer with higher apparent molecular weight, increasing the extensional relaxation time. In the DMF-rich regime, non-bridging DMF molecules increasingly solvate individual PNIPAM chains; consequently, more individual chains are stretched in extensional flows, leading to a reduction in the extensional relaxation time. These findings demonstrate that interactions between components in these ternary systems have unexpected but significant implications in solution extensional flow behavior. Additionally, in the case of PNIPAM/DMF/water, the processability of polymer-containing formulations can be modulated for spraying or for fiber spinning applications just by varying cosolvent (DMF) content. 
    more » « less
  3. In many commercial applications, polymer–dye interactions are frequently encountered from food to wastewater treatment, and while shear rheology has been well characterized, the extensional properties are not well known. The extensional viscosity ηE and relaxation time λE are the extensional rheological parameters that provide valuable insights into how aqueous polymers respond during deformation, and this study investigated the effect of dyes on the extensional rheology of three different aqueous polymer solutions (e.g., anionic, cationic, and neutral) paired with two different dye salts (e.g., anionic and cationic) using drop pinch-off experiments. We have found that the influence of dyes on the pinch-off dynamics is complex but generally leads to a decrease in, for example, the apparent extensional relaxation time. We have utilized the dripping-onto-substrate method to probe the uniaxial deformation of widely used polymers such as xanthan gum (XG), poly(diallyldimethylammonium chloride) (PDADMAC), and poly(ethylene oxide) (PEO) as the anionic, cationic, and neutral polymers, respectively, paired with either fluorescein (Fl) or methylene blue (MB) as the anionic and cationic dyes, respectively. Polymer–dye pairs with opposite charges (e.g., XG–MB and PDADMAC–Fl) displayed a pronounced decrease in pinch-off times, but even PEO, which is a neutral polymer, resulted in decreased pinch-off times, which was restored by the addition of NaCl. The pinch-off times for the Boger fluid (mixture of poly(ethylene glycol) and PEO), however, were surprisingly uninfluenced by dyes. These results showed that not only did the small addition of dyes strongly decrease the polymer relaxation times, but the relative importance of the dye salts on the polymer pinch-off dynamics was also different from that of pure salts such as NaCl. 
    more » « less
  4. We analyse the electrophoresis of a weakly charged particle with a thin double layer in a dilute polymer solution. The particle velocity in polymer solutions modelled with different constitutive equations is calculated using a regular perturbation in the polymer concentration and the generalized reciprocal theorem. The analysis shows that the polymer is strongly stretched in two regions, the birefringent strand and the high-shear region inside the double layer. The electrophoretic velocity of the particle always decreases with the addition of polymers due to both increased viscosity and fluid elasticity. At a small Weissenberg number ( $Wi$ ), which is the product of the polymer relaxation time and the shear rate, the polymers inside the double layer contribute to most of the velocity reduction by increasing the fluid viscosity. With increasing $Wi$ , viscoelasticity decreases and shear thinning increases the particle velocity. Polymer elasticity alters the fluid velocity disturbance outside the double layer from that of a neutral squirmer to a puller-type squirmer. At high $Wi$ , the strong extensional stress inside the birefringent strand downstream of the particle dominates the velocity reduction. The scaling of the birefringent strand is used to estimate the particle velocity. 
    more » « less
  5. We demonstrate enhanced Li+ transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li+SO3– ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (∼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >104 times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li+ (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers. 
    more » « less