skip to main content


Title: Tropical widening: From global variations to regional impacts
Over the past 15 years, numerous studies have suggested that the sinking branches of Earth’s Hadley circulation and the associated subtropical dry zones have shifted poleward over the late 20 th century and early 21 st century. Early estimates of this tropical widening from satellite observations and reanalyses varied from 0.25° to 3° latitude per decade, while estimates from global climate models show widening at the lower end of the observed range. In 2016, two working groups, the US Climate Variability and Predictability (CLIVAR) working group on the Changing Width of the Tropical Belt and the International Space Science Institute (ISSI) Tropical Width Diagnostics Intercomparison Project, were formed to synthesize current understanding of the magnitude, causes, and impacts of the recent tropical widening evident in observations. These working groups concluded that the large rates of observed tropical widening noted by earlier studies resulted from their use of metrics that poorly capture changes in the Hadley circulation, or from the use of reanalyses that contained spurious trends. Accounting for these issues reduces the range of observed expansion rates to 0.25°–0.5° latitude decade -1 —within the range from model simulations. Models indicate that most of the recent Northern Hemisphere tropical widening is consistent with natural variability, whereas increasing greenhouse gases and decreasing stratospheric ozone likely played an important role in Southern Hemisphere widening. Whatever the cause or rate of expansion, understanding the regional impacts of tropical widening requires additional work, as different forcings can produce different regional patterns of widening.  more » « less
Award ID(s):
1502208
PAR ID:
10158139
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability. 
    more » « less
  2. The width of the tropical belt has been analyzed with a variety of metrics, often based on zonal-mean data from reanalyses. However, constraining the global and regional tropical width requires both a global spatial-resolving observational dataset and an appropriate metric to take advantage of such data. The tropical tropopause break is arguably such a metric. This study aims to evaluate the performance of different reanalyses and metrics with a focus on depicting regional tropical belt width. We choose four distinct tropopause-break metrics derived from global positioning system radio occultation (GPS-RO) satellite data and four modern reanalyses (ERA-Interim, MERRA-2, JRA-55, and CFSR). We show that reanalyses generally reproduce the regional tropical tropopause break to within 10° of that in GPS-RO data—but that the tropical width is somewhat sensitive (within 4°) to how data are averaged zonally, moderately sensitive (within 10°) to the dataset resolution, and more sensitive (20° over the Northern Hemisphere Atlantic Ocean during June–August) to the choice of metric. Reanalyses capture the poleward displacement of the tropical tropopause break over land and equatorward displacement over ocean during summertime, and the reverse during the wintertime. Reanalysis-based tropopause breaks are also generally well correlated with those from GPS-RO, although CFSR reproduces 14-yr trends much more closely than others (including ERA-Interim). However, it is hard to say which dataset is the best match of GPS-RO. We further find that the tropical tropopause break is representative of the subtropical jet latitude and the Northern Hemisphere edge of the Hadley circulation in terms of year-to-year variations.

     
    more » « less
  3. Abstract

    The Hadley circulation (HC) is often considered zonally uniform and defined using the zonally averaged mass stream function (MSF). However, the longitudinal distribution of the overturning circulation is far from uniform, which has profound impacts on regional climates. This study uses a recently developed technique to examine the three‐dimensional MSF and thus the regional manifestations of the HC, and evaluates their climatology and seasonality in eight commonly used reanalysis datasets. This comparison emphasizes the spatial structure and the intensity of four regional Hadley cells, defined based on the natural boundaries of the three‐dimensional MSF. Specifically, two Hadley cells are located in the Indo‐Pacific warm pool region, with a strong and relatively deep cell extending from the equator to mid‐latitudes in each hemisphere. The other two cells are located over the East Pacific‐Atlantic sector, which is relatively weak and shallow, confined within the tropics and subtropics. The spatial structure of each regional cell is nearly identical among all reanalysis datasets, with pairwise spatial correlation coefficients higher than 0.9. However, the intensities of regional MSF show a large spread among these datasets. The range of this spread reaches up to about half of the means of all reanalysis datasets over the Indo‐Pacific warm pool region in the Northern Hemisphere. Further analysis reveals a large spread in the spatial structure and the amplitudes of the regional HC trends among different reanalyses. The findings highlight uncertainties in the regional circulation of modern reanalysis datasets and have implications for interpreting past and future circulation changes.

     
    more » « less
  4. Abstract

    The degree of Hadley cell expansion under global warming will have a substantial impact on changing rainfall patterns. Most previous studies have quantified changes in total tropical width, focused on the Southern Hemisphere Hadley cell or considered each hemisphere's response to a multitude of anthropogenic forcings. It is shown here that under exclusive CO2forcing, climate models predict twice as much Hadley cell expansion in the Southern Hemisphere relative to the Northern Hemisphere. This asymmetry is present in the annual mean expansion and all seasons except boreal autumn. It is robust across models and Hadley cell edge definitions. It is surprising since asymmetries in simulated Hadley cell expansion are typically attributed to stratospheric ozone depletion or aerosol emission. Its primary cause is smaller sensitivity of the Northern Hemisphere Hadley cell to static stability changes. The pattern of sea surface warming and the CO2direct radiative effect also contribute to the asymmetry.

     
    more » « less
  5. Future emissions of greenhouse gases into the atmosphere are projected to result in significant circulation changes. One of the most important changes is the widening of the tropical belt, which has great societal impacts. Several mechanisms (changes in surface temperature, eddy phase speed, tropopause height, and static stability) have been proposed to explain this widening. However, the coupling between these mechanisms has precluded elucidating their relative importance. Here, the abrupt quadrupled-CO2simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to examine the proposed mechanisms. The different time responses of the different mechanisms allow us to disentangle and evaluate them. As suggested by earlier studies, the Hadley cell edge is found to be linked to changes in subtropical baroclinicity. In particular, its poleward shift is accompanied by an increase in subtropical static stability (i.e., a decrease in temperature lapse rate) with increased CO2concentrations. These subtropical changes also affect the eddy momentum flux, which shifts poleward together with the Hadley cell edge. Transient changes in tropopause height, eddy phase speed, and surface temperature, however, were found not to accompany the poleward shift of the Hadley cell edge. The widening of the Hadley cell, together with the increase in moisture content, accounts for most of the expansion of the dry zone. Eddy moisture fluxes, on the other hand, are found to play a minor role in the expansion of the dry zone.

     
    more » « less