skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraints from Invariant Subtropical Vertical Velocities on the Scalings of Hadley Cell Strength and Downdraft Width with Rotation Rate
Abstract Weak-temperature-gradient influences from the tropics and quasigeostrophic influences from the extratropics plausibly constrain the subtropical-mean static stability in terrestrial atmospheres. Because mean descent acting on this static stability is a leading-order term in the thermodynamic balance, a state-invariant static stability would impose constraints on the Hadley cells, which this paper explores in simulations of varying planetary rotation rate. If downdraft-averaged effective heating (the sum of diabatic heating and eddy heat flux convergence) too is invariant, so must be vertical velocity—an “omega governor.” In that case, the Hadley circulation overturning strength and downdraft width must scale identically—the cell can strengthen only by widening or weaken only by narrowing. Semiempirical scalings demonstrate that subtropical eddy heat flux convergence weakens with rotation rate (scales positively) while diabatic heating strengthens (scales negatively), compensating one another if they are of similar magnitude. Simulations in two idealized, dry GCMs with a wide range of planetary rotation rates exhibit nearly unchanging downdraft-averaged static stability, effective heating, and vertical velocity, as well as nearly identical scalings of the Hadley cell downdraft width and strength. In one, eddy stresses set this scaling directly (the Rossby number remains small); in the other, eddy stress and bulk Rossby number changes compensate to yield the same, ~Ω−1/3scaling. The consistency of this power law for cell width and strength variations may indicate a common driver, and we speculate that Ekman pumping could be the mechanism responsible for this behavior. Diabatic heating in an idealized aquaplanet GCM is an order of magnitude larger than in dry GCMs and reanalyses, and while the subtropical static stability is insensitive to rotation rate, the effective heating and vertical velocity are not.  more » « less
Award ID(s):
1912673
PAR ID:
10474853
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
5
ISSN:
0022-4928
Format(s):
Medium: X Size: p. 1445-1463
Size(s):
p. 1445-1463
Sponsoring Org:
National Science Foundation
More Like this
  1. Extending previous work with a dry model, this study investigates the sensitivity of superrotation to the location/strength of baroclinic eddies in an idealized moist aquaplanet GCM with terrestrial rotation rate and planetary radius. A suite of fixed-SST experiments is performed in which the extratropical SST gradient is flattened poleward of some specified latitude. Consistent with the dry simulations, transition to superrotation is found as this reference latitude moves near the subtropics. The superrotation is dependent on the equatorial acceleration due to interactions between equatorial Kelvin waves and subtropical Rossby waves, but is strongly enhanced by a reduction in drag by the baroclinic eddies on the subtropical upper troposphere. The reduction in the extratropical drag and the strength of superrotation depend on the strength and structure of the Hadley cell, and hence on convective closure. The transition to strong superrotation is aided by a positive feedback that cannot occur when a strong Hadley cell drag limits the equatorial vertical shear and upper-troposphere equatorial westerlies. 
    more » « less
  2. null (Ed.)
    Abstract This study derives a complete set of equatorially confined wave solutions from an anelastic equation set with the complete Coriolis terms, which include both the vertical and meridional planetary vorticity. The propagation mechanism can change with the effective static stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of buoyancy as an eastward-propagation mechanism is replaced by the compressional beta effect (i.e., vertical density-weighted advection of the meridional planetary vorticity). For example, the Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are meridional vorticity disturbances that propagate eastward owing to the compressional beta effect. The compressional Rossby wave solutions can serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs) in numerical models; with an effectively neutral condition and initial large-scale disturbances given a half vertical wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a phase speed of 0.24 m s −1 . The phase speed increases with the planetary rotation rate and the vertical wavelength and also changes with the density scale height. Besides, the compressional beta effect and the meridional vorticity tendency are reconstructed using reanalysis data and regressed upon tropical precipitation filtered for the Madden–Julian oscillation (MJO). The results suggest that the compressional beta effect contributes 10.8% of the meridional vorticity tendency associated with the MJO in terms of the ratio of the minimum values. 
    more » « less
  3. null (Ed.)
    Abstract How far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circulation absent. We explicitly simulate this latitude-by-latitude radiative-convective equilibrium (RCE) state. Its depth-averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sin φ , where φ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under solsticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave according to this scaling. 
    more » « less
  4. null (Ed.)
    Abstract The response of mid-latitude equilibrated eddy length scale to static stability has long been questioned but not investigated in well-controlled experiments with unchanged mean zonal wind and meridional temperature gradient. With iterative use of the linear response function of an idealized dry atmosphere, we obtain a time-invariant and zonally-uniform forcing to decrease the near-surface temperature by over 2 K while keeping the change in zonal wind negligible (within 0.2m s −1 ). In such experiments of increased static stability, energy-containing zonal scale decreases by 3–4%, which matches with Rhines scale decrease near the jet core. Changes in Rossby radius (+2%), maximum baroclinic growth scale (-1%) and Kuo scale (0%) fail to match this change in zonal scale. These findings and well-controlled experiments help with better understanding of eddy–mean flow interactions and hence the mid-latitude circulation and its response to climate change. 
    more » « less
  5. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less