Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which the dust is radiatively decoupled from the circulation. The theory is built around a dust conservation equation for dust-coupled AEWs in zonal-mean African easterly jets. The theory predicts that, for both the passive and active cases, the dust transports will be largest where the zonal-mean dust gradients are maximized on an AEW critical surface. Whether the dust transports are largest for the radiatively passive or radiatively active case depends on the growth rate of the AEWs, which is modulated by the dust heating. The theoretical predictions are confirmed via experiments carried out with the Weather Research and Forecasting model, which is coupled to a dust conservation equation. The experiments show that the meridional dust transports dominate in the passive case, while the vertical dust transports dominate in the active case. 
                        more » 
                        « less   
                    
                            
                            Potential Vorticity Generation by West African Squall Lines
                        
                    
    
            The West African summer monsoon features multiple, complex interactions between African easterly waves (AEWs), moist convection, variable land surface properties, dust aerosols, and the diurnal cycle. One aspect of these interactions, the coupling between convection and AEWs, is explored using observations obtained during the 2006 African Monsoon Multidisciplinary Analyses (AMMA) field campaign. During AMMA, a research weather radar operated at Niamey, Niger, where it surveilled 28 squall-line systems characterized by leading convective lines and trailing stratiform regions. Nieto Ferreira et al. found that the squall lines were linked with the passage of AEWs and classified them into two tracks, northerly and southerly, based on the position of the African easterly jet (AEJ). Using AMMA sounding data, we create a composite of northerly squall lines that tracked on the cyclonic shear side of the AEJ. Latent heating within the trailing stratiform regions produced a midtropospheric positive potential vorticity (PV) anomaly centered at the melting level, as commonly observed in such systems. However, a unique aspect of these PV anomalies is that they combined with a 400–500-hPa positive PV anomaly extending southward from the Sahara. The latter feature is a consequence of the deep convective boundary layer over the hot Saharan Desert. Results provide evidence of a coupling and merging of two PV sources—one associated with the Saharan heat low and another with latent heating—that ends up creating a prominent midtropospheric positive PV maximum to the rear of West African squall lines. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1853633
- PAR ID:
- 10158149
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 148
- Issue:
- 4
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 1691 to 1715
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract While considerable attention has been given to how convectively coupled Kelvin waves (CCKWs) influence the genesis of tropical cyclones (TCs) in the Atlantic Ocean, less attention has been given to their direct influence on African easterly waves (AEWs). This study builds a climatology of AEW and CCKW passages from 1981 to 2019 using an AEW-following framework. Vertical and horizontal composites of these passages are developed and divided into categories based on AEW position and CCKW strength. Many of the relationships that have previously been found for TC genesis also hold true for non-developing AEWs. This includes an increase in convective coverage surrounding the AEW center in phase with the convectively enhanced (“active”) CCKW crest, as well as a buildup of relative vorticity from the lower to upper troposphere following this active crest. Additionally, a new finding is that CCKWs induce specific humidity anomalies around AEWs that are qualitatively similar to those of relative vorticity. These modifications to specific humidity are more pronounced when AEWs are at lower latitudes and interacting with stronger CCKWs. While the influence of CCKWs on AEWs is mostly transient and short lived, CCKWs do modify the AEW propagation speed and westward-filtered relative vorticity, indicating that they may have some longer-term influences on the AEW life cycle. Overall, this analysis provides a more comprehensive view of the AEW–CCKW relationship than has previously been established, and supports assertions by previous studies that CCKW-associated convection, specific humidity, and vorticity may modify the favorability of AEWs to TC genesis over the Atlantic.more » « less
- 
            Abstract The processes that control the isotopic composition of precipitation in the midlatitudes are complicated, but can provide valuable insights into precipitation‐generating processes and are critical for interpreting stable isotope‐based paleoclimate records. In this study, we investigated the controls on changes in the isotopic composition of rainwater in central Texas using a combination of existing monthly stable isotope data from the global network of isotopes in precipitation and 20 months of event‐based rainwater collection from Austin, TX. We find that the strongest control on the isotopic composition of precipitation is the varying proportion of convective and stratiform rainfall, with other factors such as precipitation amount, temperature, and storm track playing a secondary role. Isotopic values are generally lower in the cold season than the warm season precipitation because cold season precipitation is predominantly stratiform often associated with a northerly storm track. However, the majority of the precipitation in the south‐central United States occurs during the warm season in association with mesoscale convective systems (MCSs) that are fed with moisture by the southerly winds. MCSs are characterized by a combination of a leading edge of organized deep convection and trailing stratiform precipitation. Stronger MCSs tend to contain higher proportions of stratiform rainfall and, as a result, have more isotopically depleted values. Therefore, changes in the stable isotopic composition of rainfall may be interpreted as reflecting changes in the intensity of MCS.more » « less
- 
            Abstract Recent research has demonstrated a relationship between convectively coupled Kelvin waves (CCKWs) and tropical cyclogenesis, likely due to the influence of CCKWs on the large-scale environment. However, it remains unclear which environmental factors are most important and how they connect to TC genesis processes. Using a 39-yr database of African easterly waves (AEWs) to create composites of reanalysis and satellite data, it is shown that genesis may be facilitated by CCKW-driven modifications to convection and moisture. First, stand-alone composites of genesis demonstrate the significant role of environmental preconditioning and convective aggregation. A moist static energy variance budget indicates that convective aggregation during genesis is dominated by feedbacks between convection and longwave radiation. These processes begin over two days prior to genesis, supporting previous observational work. Shifting attention to CCKWs, up to 76% of developing AEWs encounter at least one CCKW in their lifetime. An increase in genesis events following convectively active CCKW phases is found, corroborating earlier studies. A decrease in genesis events following convectively suppressed phases is also identified. Using CCKW-centered composites, we show that the convectively active CCKW phases enhance convection and moisture content in the vicinity of AEWs prior to genesis. Furthermore, enhanced convective activity is the main discriminator between AEW–CCKW interactions that result in genesis versus those that do not. This analysis suggests that CCKWs may influence genesis through environmental preconditioning and radiative–convective feedbacks, among other factors. A secondary finding is that AEW attributes as far east as central Africa may be predictive of downstream genesis. Significance StatementThe purpose of this work is to investigate how one type of atmospheric wave, known as convectively coupled Kelvin waves (CCKWs), impacts the formation (“genesis”) of tropical cyclones. Forecasting of genesis remains a significant challenge, so identifying how CCKWs influence this process could help improve forecasts and give communities greater lead times. Our results show that CCKWs could temporarily make genesis more likely by increasing atmospheric moisture content and convective activity. While not all CCKWs lead to genesis, those that do are associated with a particularly strong increase in convection. This provides a potential tool for forecasters monitoring CCKWs and TC genesis in real time and motivates follow-up work on this topic in numerical models.more » « less
- 
            Abstract On 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m s−1for ∼20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostatic Modeling System (UWNMS) and of absolute vorticity in High-Resolution Rapid Refresh (HRRR) forecast analyses. This structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo. The speed of propagation of the derecho is similar to the westerly wind maximum in the 3–5-km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole/northerly jet structure. Differences in this structure among the three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho. Significance StatementThe purpose of this work is to investigate the structure of potential vorticity (PV) in the lower troposphere in a derecho. It is found that a northerly outflow jet occurs between an east–west-oriented horizontal PV dipole, which is described here for the first time. The negative PV member coincides with the downdraft and is inertially unstable, while the positive PV member coincides with the updraft. This work contributes toward the theory of resonant structures and longevity. The 3–5-km westerly inflow layer constitutes a steering level, which controls propagation speed despite differences in structure. The degree of westward tilt with height is related to the pattern of forcing by diabatic stretching in producing the PV dipole.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    