skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reductive Explanation and the Construction of Quantum Theories
Abstract I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states.  more » « less
Award ID(s):
1846560
PAR ID:
10158181
Author(s) / Creator(s):
Date Published:
Journal Name:
The British Journal for the Philosophy of Science
ISSN:
0007-0882
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On the basis of a number of Swampland conditions, we argue that the Hilbert space of baby universe states must be one-dimensional in a consistent theory of quantum gravity. This scenario may be interpreted as a type of “Gauss’s law for entropy” in quantum gravity, and provides a clean synthesis of the tension between Euclidean wormholes and a standard interpretation of the holographic dictionary, with no need for an ensemble. Our perspective relies crucially on the recently-proposed potential for quantum-mechanical gauge redundancies between states of the universe with different topologies. We further comment on the possible exceptions in d ≤ 3 for this hypothesis and the role of an ensemble in holographic theories in the context of theories of quantum gravity in d = 2 (such as JT gravity and possible cousins in d = 3), which we argue are incomplete physical theories that should be viewed as branes in a higher dimensional theory of quantum gravity for which an ensemble plays no role. 
    more » « less
  2. Deacon, Keith S.; Meyers, Ronald E. (Ed.)
    In this article, we review the proposed experiments for the Deep Space Quantum Link (DSQL) mission concept aiming to probe gravitational effects on quantum optical systems. Quantum theory and general relativity are the two most successful frameworks we have to describe the universe. These theories have been validated through experimental confirmations in their domains of application— the macroscopic domain for relativity, and the microscopic domain for quantum theory. To date, laboratory experiments conducted in a regime where both theories manifest measurable effects on photons are limited. Satellite platforms enable the transmission of quantum states of light between different inertial frames and over distances impossible to emulate in the laboratory. The DSQL concept proposes simultaneous tests of quantum mechanics and general relativity enabled by quantum optical links to one or more spacecrafts. 
    more » « less
  3. Jaeger, Gregg (Ed.)
    Recent work has demonstrated a correspondence that bridges quantum information processing and high-energy physics: discrete quantum cellular automata (QCA) can, in the continuum limit, reproduce quantum field theories (QFTs). This QCA/QFT correspondence raises fundamental questions about how matter/energy, information, and the nature of spacetime are related. Here, we show that free QED is equivalent to the continuous-space-and-time limit of Fermi and Bose QCA theories on the cubic lattice derived from quantum random walks satisfying simple symmetry and unitarity conditions. In doing so, we define the Fermi and Bose theories in a unified manner using the usual fermion internal space and a boson internal space that is six-dimensional. We show that the reduction to a two-dimensional boson internal space (two helicity states arising from spin-1 plus the photon transversality condition) comes from restricting the QCA theory to positive energies. We briefly examine common symmetries of QCAs and how time-reversal symmetry demands the existence of negative-energy solutions. These solutions produce a tension in coupling the Fermi and Bose theories, in which the strong locality of QCAs seems to require a non-zero amplitude to produce negative-energy states, leading to an unphysical cascade of negative-energy particles. However, we show in a 1D model that, by extending interactions over a larger (but finite) range, it is possible to exponentially suppress the production of negative-energy particles to the point where they can be neglected. 
    more » « less
  4. A bstract We discuss the holographic description of Narain U(1) c × U(1) c conformal field theories, and their potential similarity to conventional weakly coupled gravitational theories in the bulk, in the sense that the effective IR bulk description includes “U(1) gravity” amended with additional light degrees of freedom. Starting from this picture, we formulate the hypothesis that in the large central charge limit the density of states of any Narain theory is bounded by below by the density of states of U(1) gravity. This immediately implies that the maximal value of the spectral gap for primary fields is ∆ 1 = c /(2 πe ). To test the self-consistency of this proposal, we study its implications using chiral lattice CFTs and CFTs based on quantum stabilizer codes. First we notice that the conjecture yields a new bound on quantum stabilizer codes, which is compatible with previously known bounds in the literature. We proceed to discuss the variance of the density of states, which for consistency must be vanishingly small in the large- c limit. We consider ensembles of code and chiral theories and show that in both cases the density variance is exponentially small in the central charge. 
    more » « less
  5. A<sc>bstract</sc> The AdS/CFT correspondence states that certain conformal field theories are equivalent to string theories in a higher-dimensional anti-de Sitter space. One aspect of the correspondence is an equivalence of density matrices or, if one ignores normalizations, of positive operators. On the CFT side of the correspondence, any two positive operatorsA, Bwill satisfy the trace inequality Tr(AB) ≤ Tr(A)Tr(B). This relation holds on any Hilbert space$$ \mathcal{H} $$ H and is deeply associated with the fact that the algebraB($$ \mathcal{H} $$ H ) of bounded operators on$$ \mathcal{H} $$ H is a type I von Neumann factor. Holographic bulk theories must thus satisfy a corresponding condition, which we investigate below. In particular, we argue that the Euclidean gravitational path integral respects this inequality at all orders in the semi-classical expansion and with arbitrary higher-derivative corrections. The argument relies on a conjectured property of the classical gravitational action, which in particular implies a positive action conjecture for quantum gravity wavefunctions. We prove this conjecture for Jackiw-Teitelboim gravity and we also motivate it for more general theories. 
    more » « less