skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Debugging and Detecting Numerical Errors in Computation with Posits
Posit is a recently proposed alternative to the floating point representation (FP). It provides tapered accuracy. Given a fixed number of bits, the posit representation can provide better precision for some numbers compared to FP, which has generated significant interest in numerous domains. Being a representation with tapered accuracy, it can introduce high rounding errors for numbers outside the above golden zone. Programmers currently lack tools to detect and debug errors while programming with posits. This paper presents PositDebug, a compile-time instrumentation that performs shadow execution with high pre- cision values to detect various errors in computation using posits. To assist the programmer in debugging the reported error, PositDebug also provides directed acyclic graphs of instructions, which are likely responsible for the error. A contribution of this paper is the design of the metadata per memory location for shadow execution that enables productive debugging of errors with long-running programs. We have used PositDebug to detect and debug errors in various numerical applications written using posits. To demonstrate that these ideas are applicable even for FP programs, we have built a shadow execution framework for FP programs that is an order of magnitude faster than Herbgrind.  more » « less
Award ID(s):
1908798 1917897 1453086
PAR ID:
10158303
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI-2020)
Page Range / eLocation ID:
731-746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Posit is a recently proposed representation for approximating real numbers using a finite number of bits. In contrast to the floating point (FP) representation, posit provides variable precision with a fixed number of total bits (i.e., tapered accuracy). Posit can represent a set of numbers with higher precision than FP and has garnered significant interest in various domains. The posit ecosystem currently does not have a native general-purpose math library. This paper presents our results in developing a math library for posits using the CORDIC method. CORDIC is an iterative algorithm to approximate trigonometric functions by rotating a vector with different angles in each iteration. This paper proposes two extensions to the CORDIC algorithm to account for tapered accuracy with posits that improves precision: (1) fast-forwarding of iterations to start the CORDIC algorithm at a later iteration and (2) the use of a wide accumulator (i.e., the quire data type) to minimize precision loss with accumulation. Our results show that a 32-bit posit implementation of trigonometric functions with our extensions is more accurate than a 32-bit FP implementation. 
    more » « less
  2. This paper proposes, EFTSanitizer, a fast shadow execution framework for detecting and debugging numerical errors during late stages of testing especially for long-running applications. Any shadow execution framework needs an oracle to compare against the floating point (FP) execution. This paper makes a case for using error free transformations, which is a sequence of operations to compute the error of a primitive operation with existing hardware supported FP operations, as an oracle for shadow execution. Although the error of a single correctly rounded FP operation is bounded, the accumulation of errors across operations can result in exceptions, slow convergences, and even crashes. To ease the job of debugging such errors, EFTSanitizer provides a directed acyclic graph (DAG) that highlights the propagation of errors, which results in exceptions or crashes. Unlike prior work, DAGs produced by EFTSanitizer include operations that span various function calls while keeping the memory usage bounded. To enable the use of such shadow execution tools with long-running applications, EFTSanitizer also supports starting the shadow execution at an arbitrary point in the dynamic execution, which we call selective shadow execution. EFTSanitizer is an order of magnitude faster than prior state-of-art shadow execution tools such as FPSanitizer and Herbgrind. We have discovered new numerical errors and debugged them using EFTSanitizer. 
    more » « less
  3. null (Ed.)
    This paper proposes a new approach for debugging errors in floating point computation by performing shadow execution with higher precision in parallel. The programmer specifies parts of the program that need to be debugged for errors. Our compiler creates shadow execution tasks, which execute on different cores and perform the computation with higher precision. We propose a novel method to execute a shadow execution task from an arbitrary memory state, which is necessary because we are creating a parallel shadow execution from a sequential program. Our approach also ensures that the shadow execution follows the same control flow path as the original program. Our runtime automatically distributes the shadow execution tasks to balance the load on the cores. Our prototype for parallel shadow execution, PFPSanitizer, provides comprehensive detection of errors while having lower performance overheads than prior approaches. 
    more » « less
  4. Optimizing compilers, such as LLVM, generatedebug informationin machine code to aid debugging. This information is particularly important when debugging optimized code, as modern software is often compiled with optimization enabled. However, properly updating debug information to reflect code transformations during optimization is a complex task that often relies on manual effort. This complexity makes the process prone to errors, which can lead to incorrect or lost debug information. Finding and fixing potential debug information update errors is vital to maintaining the accuracy and reliability of the overall debugging process. To our knowledge, no existing techniques can rectify debug information update errors in LLVM. While black-box testing approaches can find such bugs, they can neither pinpoint the root causes nor suggest fixes. To fill the gap, we propose thefirsttechnique torobustifydebug information updates in LLVM. In particular, our robustification approach can find and fix incorrect debug location updates. Central to our approach is the observation that the debug locations in the original and optimized programs must satisfy aconformance relation. The relation ensures that LLVM optimizations do not introduce extraneous debug location information on the control-flow paths of the optimized programs. We introducecontrol-flow conformance analysis, a novel approach that determines the reference updates ensuring the conformance relation by observing the execution of LLVM optimization passes and analyzing the debug locations in the control-flow graphs of programs under optimization. The determined reference updates are then used to check developer-written updates in LLVM. When discrepancies arise, the reference updates serve as the update skeletons to guide the fixing. We realized our approach as a tool named MetaLoc, which determines proper debug location updates for LLVM optimizations. More importantly, with MetaLoc, we have reported and patched 46 previously unknown update errors in LLVM. All the patches, along with 22 new regression tests, have been merged into the LLVM codebase, effectively improving the accuracy and reliability of debug information in all programs optimized by LLVM. Furthermore, our approach uncovered and led to corrections in two issues within LLVM’s official documentation on debug information updates. 
    more » « less
  5. Given the importance of floating point (FP) performance in numerous domains, several new variants of FP and its alternatives have been proposed (e.g., Bfloat16, TensorFloat32, and posits). These representations do not have correctly rounded math libraries. Further, the use of existing FP libraries for these new representations can produce incorrect results. This paper proposes a novel approach for generating polynomial approximations that can be used to implement correctly rounded math libraries. Existing methods generate polynomials that approximate the real value of an elementary function 𝑓 (𝑥) and produce wrong results due to approximation errors and rounding errors in the implementation. In contrast, our approach generates polynomials that approximate the correctly rounded value of 𝑓 (𝑥) (i.e., the value of 𝑓 (𝑥) rounded to the target representation). It provides more margin to identify efficient polynomials that produce correctly rounded results for all inputs. We frame the problem of generating efficient polynomials that produce correctly rounded results as a linear programming problem. Using our approach, we have developed correctly rounded, yet faster, implementations of elementary functions for multiple target representations. 
    more » « less