skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Achieving Morphological Control over Lamellar Manganese Metal‐Organic Framework through Modulated Bi‐Phase Growth
Abstract A modulated bi‐phase synthesis towards large‐scale manganese 1,4‐benzenedicarboxylate (MnBDC) MOFs with a precise control over their morphology (bulk vs. layered) is presented. Metal precursors and organic ligands are separated to reduce the kinetic reaction rates for better control over the crystallization process. Based on scanning electron microscopy (SEM), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), and Raman spectroscopy studies, the continuous ligand supply along with the presence of pyridine capping agent are highly effective in promoting the layer‐by‐layer growth and achieving large crystal sizes. Once layered MnBDC is stabilized, topotactic intercalation chemistry was used to demonstrate the feasibility of bromine intercalation on these layered materials. Bromine intercalation is possible between the MOFs layers for the first time. Bromine intercalation causes colossal reduction in layered MnBDC band gap while it has no observable effect on bulk MOFs.  more » « less
Award ID(s):
1933214 1955889
PAR ID:
10158395
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
24
ISSN:
1433-7851
Page Range / eLocation ID:
p. 9408-9413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes the identification of specific host–guest interactions between basic gases (NH3, CD3CN, and pyridine) and four topologically similar 2-dimensional (2D) metal–organic frameworks (MOFs) comprising copper and nickel bis(diimine) and bis(dioxolene) linkages of triphenylene-based ligands using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance spectroscopy (EPR), and powder X-ray diffraction (PXRD). This contribution demonstrates that synthetic bottom-up control over surface chemistry of layered MOFs can be used to impart Lewis acidity or a mixture of Brønsted and Lewis acidities, through the choice of organic ligand and metal cation. This work also distinguishes differences in redox activity within this class of MOFs that contribute to their ability to promote electronic transduction of intermolecular interactions. Future design of structure–function relationships within multifunctional 2D MOFs will benefit from the insights this work provides. 
    more » « less
  2. Metal-organic frameworks (MOFs) are highly designable porous materials and are recognized for their exceptional selectivity as chemical sensors. However, they are not always suitable for incorporation with existing sensing platforms, especially sensing modes that rely on electronic changes in the sensing material (e.g., work-function response or conductometric response). One way that MOFs can be utilized is by growing them as a porous membrane on a sensing layer and using the MOF to affect the electronic structure of the sensing layer. In this paper, a proof-of-concept for electronic modulation with MOFs is demonstrated. A PdO nanoparticle sensing layer on a chemical-sensitive field-effect-transistor is made more sensitive to a reducing gas, hydrogen, and less sensitive to oxidizng molecules, like H2S and NO2, by growing a layer of the MOF “ZIF-8” over the nanoparticles. The proposed mechanism is supported by X-ray photoelectron spectroscopy showing that the ZIF-8 membrane partially reduces the PdO sensing layer. 
    more » « less
  3. Recent research has demonstrated the potential for topological superconductivity, anisotropic Majorana bound states, optical nonlinearity, and enhanced electrochemical activity for transition metal dichalcogenides (TMDs) with a 2M structure. These unique TMD compounds exhibit metastability and, upon heating, undergo a transition to the thermodynamically stable 2H phase. The 2M phase is commonly made at high temperatures using traditional solid-state methods, and this metastability further complicates the growth of large 2M WS2 crystals. Herein, a novel synthetic method was developed, focusing on a molten salt reaction to synthesize large 2H crystals and then inducing transformation to the 2M phase through intercalation and thermal treatment. The 2H crystals were intercalated via a room-temperature sodium naphthalenide solution, producing a previously unreported Na-intercalated 2H WS2 phase. Thermal heating was required to facilitate the phase transition to the intercalated 2M crystal structure. This phase transition was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), electron dispersive X-ray spectroscopy (EDS), and Raman spectroscopy, which confirmed the synthesis of the intercalated 2M phase. Upon deintercalation, crystal and powder samples showed superconductivity with a Tc of 8.6–8.7 K, similar to previously reported values. The generality of this process was further demonstrated using alkali metal triethyl borohydride to intercalate 2H WS2 and produced the desired 2M phase. This novel synthetic method has broad implications for discovering metastable phases in other TMD families and layered materials. Separation of the intercalation and phase transition also has the potential to allow for large-scale synthesis of this technologically important phase with greater control over each step of the reaction. 
    more » « less
  4. Abstract Non‐equilibrium defects often dictate the macroscopic properties of materials. They largely define the reversibility and kinetics of processes in intercalation hosts in rechargeable batteries. Recently, imaging methods have demonstrated that transient dislocations briefly appear in intercalation hosts during ion diffusion. Despite new discoveries, the understanding of impact, formation and self‐healing mechanisms of transient defects, including and beyond dislocations, is lacking. Here, operando X‐ray Bragg Coherent Diffractive Imaging (BCDI) and diffraction peak analysis capture the stages of formation of a unique metastable domain boundary, defect self‐healing, and resolve the local impact of defects on ionic diffusion in NaxNi1−yMnyO2intercalation hosts in a charging sodium‐ion battery. Results, applicable to a wide range of layered intercalation materials due to the shared nature of framework layers, elucidate new dynamics of transient defects and their connection to macroscopic properties, and suggest how to control the nanostructure dynamics. 
    more » « less
  5. Abstract Layered transition‐metal dichalcogenides (TMDs) have shown promise to replace carbon‐based compounds as suitable anode materials for Lithium‐ion batteries (LIBs) owing to facile intercalation and de‐intercalation of lithium (Li) during charging and discharging, respectively. While the intercalation mechanism of Li in mono‐ and bi‐layer TMDs has’ been thoroughly examined, mechanistic understanding of Li intercalation‐induced phase transformation in bulk or films of TMDs is still largely unexplored. This study investigates possible scenarios during sequential Li intercalation and aims to gain a mechanistic understanding of the phase transformation in bulk MoS2using density functional theory (DFT) calculations. The manuscript examines the role of concentration and distribution of Li‐ions on the formation of dual‐phase 2H‐1T microstructures that have been observed experimentally. The study demonstrates that lithiation would proceed in a systematic layer‐by‐layer manner wherein Li‐ions diffuse into successive interlayer spacings to render local phase transformation of the adjacent MoS2layers from 2H‐to‐1T phase in the multilayered MoS2. This local phase transition is attributed to partial ionization of Li and charge redistribution around the metal atoms and is followed by subsequent lattice straining. In addition, the stability of single‐phase vs. multiphase intercalated microstructures, and the origins of structural changes accompanying Li‐ion insertion are investigated at atomic scales. 
    more » « less