skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity
Abstract Self‐sustained NiI/IIIcycles are established as a potentially general paradigm in photoredox Ni‐catalyzed carbon–heteroatom cross‐coupling reactions through a strategy that allows us to recapitulate photoredox‐like reactivity in the absence of light across a wide range of substrates in the amination, etherification, and esterification of aryl bromides, the latter of which has remained, hitherto, elusive under thermal Ni catalysis. Moreover, the accessibility of esterification in the absence of light is especially notable because previous mechanistic studies on this transformation under photoredox conditions have unanimously invoked energy‐transfer‐mediated pathways.  more » « less
Award ID(s):
1855531
PAR ID:
10158396
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
24
ISSN:
1433-7851
Page Range / eLocation ID:
p. 9527-9533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. 
    more » « less
  2. Abstract This study presents a Ni‐photoredox method for indoleN‐arylation, broadening the range of substrates to include indoles with unprotected C3‐positions and base‐sensitive groups. Through detailed mechanistic inquiries, a Ni(I/III) mechanism was uncovered, distinct from those commonly proposed for Ni‐catalyzed amine, thiol, and alcohol arylation, as well as from the Ni(0/II/III) cycle identified for amide arylation under almost identical conditions. The key finding is the formation of a Ni(I) intermediate bearing the indole nucleophile as a ligand prior to oxidative addition, which is rare for Ni‐photoredox carbon‐heteroatom coupling and has a profound impact on the reaction kinetics and scope. The pre‐coordination of indole renders a more electron‐rich Ni(I) intermediate, which broadens the scope by enabling fast reactivity even with challenging electron‐rich aryl bromide substrates. Thus, this work highlights the often‐overlooked influence of X‐type ligands on Ni oxidative addition rates and illustrates yet another mechanistic divergence in Ni‐photoredox C‐heteroatom couplings. 
    more » « less
  3. Abstract Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)−C and C(sp3)−O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIVcomplex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIIIcomplex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)−C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIIIcomplex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO), the NiIVcomplex exclusively undergoes C(sp3)−OAc bond formation, while the NiIIIanalogue forms the C(sp3)−C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M−C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions. 
    more » « less
  4. Abstract Following our previous study of Artificial Intelligence Assisted Inversion (AIAI) of supernova analyses, we train a set of deep neural networks based on the 1D radiative transfer code TARDIS to simulate the optical spectra of Type Ia supernovae (SNe Ia) between 10 and 40 days after the explosion. The neural networks are applied to derive the mass of56Ni in velocity ranges above the photosphere for a sample of 124 well-observed SNe Ia in the TARDIS model context. A subset of the SNe have multi-epoch observations for which the decay of the radioactive56Ni can be used to test the AIAI quantitatively. The56Ni mass derived from AIAI using the observed spectra as inputs for this subset agrees with the radioactive decay rate of56Ni. AIAI reveals that a spectral signature near 3890 Å is related to the Niii4067Å line, and the56Ni mass deduced from AIAI is found to be correlated with the light-curve shapes of SNe Ia, with SNe Ia with broader light curves showing larger56Ni mass in the envelope above the photosphere. AIAI enables spectral data of SNe to be quantitatively analyzed under theoretical frameworks based on well-defined physical assumptions. 
    more » « less
  5. Abstract Self‐sustaining photocatalytic NO3reduction systems could become ideal NO3removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−N) aqueous solution of NO3, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3reduction to occur on the Ni2P surface. 
    more » « less