skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Indole Nucleophile Triggers Mechanistic Divergence in Ni‐Photoredox N‐Arylation
Abstract This study presents a Ni‐photoredox method for indoleN‐arylation, broadening the range of substrates to include indoles with unprotected C3‐positions and base‐sensitive groups. Through detailed mechanistic inquiries, a Ni(I/III) mechanism was uncovered, distinct from those commonly proposed for Ni‐catalyzed amine, thiol, and alcohol arylation, as well as from the Ni(0/II/III) cycle identified for amide arylation under almost identical conditions. The key finding is the formation of a Ni(I) intermediate bearing the indole nucleophile as a ligand prior to oxidative addition, which is rare for Ni‐photoredox carbon‐heteroatom coupling and has a profound impact on the reaction kinetics and scope. The pre‐coordination of indole renders a more electron‐rich Ni(I) intermediate, which broadens the scope by enabling fast reactivity even with challenging electron‐rich aryl bromide substrates. Thus, this work highlights the often‐overlooked influence of X‐type ligands on Ni oxidative addition rates and illustrates yet another mechanistic divergence in Ni‐photoredox C‐heteroatom couplings.  more » « less
Award ID(s):
2235778
PAR ID:
10552977
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
67
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work demonstrates the dominance of a Ni(0/II/III) cycle for Ni‐photoredox amide arylation, which contrasts with other Ni‐photoredox C‐heteroatom couplings that operate via Ni(I/III) self‐sustained cycles. The kinetic data gathered when using different Ni precatalysts supports an initial Ni(0)‐mediated oxidative addition into the aryl bromide. Using NiCl2as the precatalyst resulted in an observable induction period, which was found to arise from a photochemical activation event to generate Ni(0) and to be prolonged by unproductive comproportionation between the Ni(II) precatalyst and the in situ generated Ni(0) active species. Ligand exchange after oxidative addition yields a Ni(II) aryl amido complex, which was identified as the catalyst resting state for the reaction. Stoichiometric experiments showed that oxidation of this Ni(II) aryl amido intermediate was required to yield functionalized amide products. The kinetic data presented supports a rate‐limiting photochemically‐mediated Ni(II/III) oxidation to enable C−N reductive elimination. An alternative Ni(I/III) self‐sustained manifold was discarded based on EPR and kinetic measurements. The mechanistic insights uncovered herein will inform the community on how subtle changes in Ni‐photoredox reaction conditions may impact the reaction pathway, and have enabled us to include aryl chlorides as coupling partners and to reduce the Ni loading by 20‐fold without any reactivity loss. 
    more » « less
  2. Abstract Self‐sustained NiI/IIIcycles are established as a potentially general paradigm in photoredox Ni‐catalyzed carbon–heteroatom cross‐coupling reactions through a strategy that allows us to recapitulate photoredox‐like reactivity in the absence of light across a wide range of substrates in the amination, etherification, and esterification of aryl bromides, the latter of which has remained, hitherto, elusive under thermal Ni catalysis. Moreover, the accessibility of esterification in the absence of light is especially notable because previous mechanistic studies on this transformation under photoredox conditions have unanimously invoked energy‐transfer‐mediated pathways. 
    more » « less
  3. Abstract Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. 
    more » « less
  4. Abstract Nonsteroidal anti-inflammatory drug derivatives (NSAIDs) are an important class of medications. Here we show a visible-light-promoted photoredox/nickel catalyzed approach to construct enantioenriched NSAIDs via a three-component alkyl arylation of acrylates. This reductive cross-electrophile coupling avoids preformed organometallic reagents and replaces stoichiometric metal reductants by an organic reductant (Hantzsch ester). A broad range of functional groups are well-tolerated under mild conditions with high enantioselectivities (up to 93% ee) and good yields (up to 90%). A study of the reaction mechanism, as well as literature precedence, enabled a working reaction mechanism to be presented. Key steps include a reduction of the alkyl bromide to the radical, Giese addition of the alkyl radical to the acrylate and capture of the α-carbonyl radical by the enantioenriched nickel catalyst. Reductive elimination from the proposed Ni(III) intermediate generates the product and forms Ni(I). 
    more » « less
  5. Abstract While enantioenriched alcohols are highly significant in medicinal chemistry, total synthesis, and materials science, the stereoselective synthesis of tertiary alcohols with two adjacent stereocenters remains a formidable challenge. In this study, we present a dual catalysis approach utilizing photoredox and nickel catalysts to enable the unprecedented chemoselective functionalization of tertiary allylic C−H bonds in allyl ethers instead of cleaving the C−O bond. The resulting allyl‐Ni intermediates can undergo coupling with various aldehydes, facilitating a novel enantioconvergent approach to access extensively functionalized homoallylicsec,tert‐vicinal diols frameworks. This protocol exhibits nice tolerance towards functional groups, a broad scope of substrates, excellent diastereo‐ and enantioselectivity (up to 20 : 1 dr, 99 %ee). Mechanistic studies suggested that allyl‐NiIIacts as the nucleophilic species in the coupling reaction with carbonyls. 
    more » « less