The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose \name{}, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks.
more »
« less
Location Prediction for Tweets
Geographic information provides an important insight into many data mining and social media systems. However, users are reluctant to provide such information due to various concerns, such as inconvenience, privacy, etc. In this paper, we aim to develop a deep learning based solution to predict geographic information for tweets. The current approaches bear two major limitations, including (a) hard to model the long term information and (b) hard to explain to the end users what the model learns. To address these issues, our proposed model embraces three key ideas. First, we introduce a multi-head self-attention model for text representation. Second, to further improve the result on informal language, we treat subword as a feature in our model. Lastly, the model is trained jointly with the city and country to incorporate the information coming from different labels. The experiment performed on W-NUT 2016 Geo-tagging shared task shows our proposed model is competitive with the state-of-the-art systems when using accuracy measurement, and in the meanwhile, leading to a better distance measure over the existing approaches.
more »
« less
- PAR ID:
- 10158483
- Date Published:
- Journal Name:
- Frontiers Big Data
- Volume:
- 2
- Issue:
- 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose SMART, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks.more » « less
-
null (Ed.)Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step in a larger process to increase participation in a broader project for seagrass monitoring in our case study. While our training program originated in the United States, we discuss our experiences for research partners and communities around the globe to become more confident in introductory drone operations for basic science. In particular, our work targets novice users without a strong background in geographic research or remote sensing. Such training provides technical guidance on the implementation of a drone mapping program for coastal research, and synthesizes our approaches to provide broad guidance for using drones in support of a developing Public Participation GIS process.more » « less
-
Abstract In recommender systems, users rate items, and are subsequently served other product recommendations based on these ratings. Even though users usually rate a tiny percentage of the available items, the system tries to estimate unobserved preferences by finding similarities across users and across items. In this work, we treat the observed ratings data as partially observed, dense, weighted, bipartite networks. For a class of systems without outside information, we adapt an approach developed for dense, weighted networks to account for unobserved edges and the bipartite nature of the problem. The approach begins with clustering both users and items into communities, and locally estimates the patterns of ratings within each subnetwork induced by restricting attention to one community of users and one community of items community. The local fitting procedure relies on estimating local sociability parameters for every user and item, and selecting the function that determines the degree correction contours which best models the underlying data. We compare the performance of our proposed approach to existing methods on a simulated data set, as well as on a data set of joke ratings, examining model performance in both cases at differing levels of sparsity. On the joke ratings data set, our proposed model performs better than existing alternatives in relatively sparse settings, though other approaches achieve better results when more data is available. Collectively, the results indicate that despite struggling to pick up subtler signals, the proposed approach’s recovery of large scale, coarse patterns may still be useful in practical settings where high sparsity is typical.more » « less
-
Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore the research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity to experience those ”beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, calledComfort Zone. We then proposed a recommender system framework that considers both user preference and theirComfort Zonewhere the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’sComfort Zonefor stimuli to promote engagement with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further helps the recommender model achieve smaller (better) inter-user similarity.more » « less
An official website of the United States government

