- Award ID(s):
- 1736030
- Publication Date:
- NSF-PAR ID:
- 10158623
- Journal Name:
- Microbiology Resource Announcements
- Volume:
- 9
- Issue:
- 8
- ISSN:
- 2576-098X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Youssef, Noha H. (Ed.)ABSTRACT Synechococcus elongatus UTEX 2973, the fastest-growing cyanobacterial strain known, optimally grows under extreme high light (HL) intensities of 1,500–2,500 μmol photons m −2 s −1 , which is lethal to most other photosynthetic microbes. We leveraged the few genetic differences between Synechococcus 2973 and the HL sensitive strain Synechococcus elongatus PCC 7942 to unravel factors essential for the high light tolerance. We identified a novel protein in Synechococcus 2973 that we have termed HltA for H igh l ight t olerance protein A . Using bioinformatic tools, we determined that HltA contains a functional PP2C-type protein phosphatase domain. Phylogenetic analysis showed that the PP2C domain belongs to the bacterial-specific Group II family and is closely related to the environmental stress response phosphatase RsbU. Additionally, we showed that unlike any previously described phosphatases, HltA contains a single N-terminal regulatory GAF domain. We found hltA to be ubiquitous throughout cyanobacteria, indicative of its potentially important role in the photosynthetic lifestyle of these oxygenic phototrophs. Mutations in the hltA gene resulted in severe defects specific to high light growth. These results provide evidence that hltA is a key factor in the tolerance of Synechococcus 2973 to high light and will open new insightsmore »
-
Johnson, Karyn N. (Ed.)ABSTRACT Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis , Porites astreoides , and Stephanocoenia intersepta . Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus , three groups of Synechococcus , photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (μ) for Prochlorococcus , all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 μ day −1 , respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h −1 and 387 ng h −1 , depending on the coral species. A lack of coral-dependent reduction inmore »
-
Martiny, Jennifer B. (Ed.)ABSTRACT The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus inmore »
-
Abstract. We investigated the possibility of bacterial symbiosis in Globigerina bulloides, a palaeoceanographically important, planktonic foraminifer. This marine protist is commonly used in micropalaeontological investigations of climatically sensitive subpolar and temperate water masses as well as wind-driven upwelling regions of the world's oceans. G. bulloides is unusual because it lacks the protist algal symbionts that are often found in other spinose species. In addition, it has a large offset in its stable carbon and oxygen isotopic compositions compared to other planktonic foraminifer species, and also that predicted from seawater equilibrium. This is suggestive of novel differences in ecology and life history of G. bulloides, making it a good candidate for investigating the potential for bacterial symbiosis as a contributory factor influencing shell calcification. Such information is essential to evaluate fully the potential response of G. bulloides to ocean acidification and climate change. To investigate possible ecological interactions between G. bulloides and marine bacteria, 18S rRNA gene sequencing, fluorescence microscopy, 16S rRNA gene metabarcoding and transmission electron microscopy (TEM) were performed on individual specimens of G. bulloides (type IId) collected from two locations in the California Current. Intracellular DNA extracted from five G. bulloides specimens was subjected to 16S rRNA gene metabarcoding and,more »
-
Marine
Synechococcus , a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. ManySynechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light–absorbing phycoerythrobilin (PEB) and blue-light–absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of howSynechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio ofmpeY tompeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains ofSynechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marineSynechococcus worldwide.