skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Spin coherent quantum transport of electrons between defects in diamond
Abstract The nitrogen-vacancy (NV) color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. Whereas individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires the development of an on-chip quantum bus for transporting information between distant qubits. Here, we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that, for two NV centers in a diamond nanowire, high-fidelity transport can be achieved over distances of order hundreds of nanometers in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
1975 to 1984
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty in locally addressing the quantum spin states of individual NV spins in a scalable, energy-efficient manner. Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems. By utilizing electrically generated spin currents, we are able to achieve efficient tuning of magnetic damping and the amplitude of the dipole fields generated by a micrometer-sized resonant magnet, enabling electrical control of the Rabi oscillation frequency of NV spins. Our results highlight the potential of NV centers in designing functional hybrid solid-state systems for next-generation quantum-information technologies. The demonstrated coupling between the NV centers and the propagating spin waves harbored by a magnetic insulator further points to the possibility to establish macroscale entanglement between distant spin qubits. 
    more » « less
  2. Abstract

    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.

    more » « less
  3. Local characterization of the properties and performances of miniaturized magnetic devices is a prerequisite for advancing present on-chip spintronic technologies. Utilizing nitrogen-vacancy (NV) centers in diamond, here we report quantum sensing of spin wave modes and magnetic stray field environment of patterned micrometer-scale Y3Fe5O12 (YIG) disks at the submicrometer length scale. Taking advantage of wide-field magnetometry techniques using NV ensembles, we map the spatially dependent NV electron spin resonances and Rabi oscillations in response to local variations of the stray fields emanating from a proximal YIG pattern. Our experimental data are in excellent agreement with theoretical predictions and micromagnetic simulation results, highlighting the significant opportunities offered by NV centers for probing the local magnetic properties of functional solid-state devices. The presented quantum sensing strategy may also find applications in the development of next-generation spintronic circuits with improved scalability and density. 
    more » « less
  4. Abstract

    Nitrogen-vacancy (NV) and silicon-vacancy (SiV) color defects in diamond are promising systems for applications in quantum technology. The NV and SiV centers have multiple charge states, and their charge states have different electronic, optical and spin properties. For the NV centers, most investigations for quantum sensing applications are targeted on the negatively charged NV (NV), and it is important for the NV centers to be in the NVstate. However, it is known that the NV centers are converted to the neutrally charged state (NV0) under laser excitation. An energetically favorable charge state for the NV and SiV centers depends on their local environments. It is essential to understand and control the charge state dynamics for their quantum applications. In this work, we discuss the charge state dynamics of NV and SiV centers under high-voltage nanosecond pulse discharges. The NV and SiV centers coexist in the diamond crystal. The high-voltage pulses enable manipulating the charge states efficiently. These voltage-induced changes in charge states are probed by their photoluminescence spectral analysis. The analysis result from the present experiment shows that the high-voltage nanosecond pulses cause shifts of the chemical potential and can convert the charge states of NV and SiV centers with the transition rates of ∼MHz. This result also indicates that the major population of the SiV centers in the sample is the doubly negatively charged state (SiV2−), which is often overlooked because of its non-fluorescent and non-magnetic nature. This demonstration paves a path for a method of rapid manipulation of the NV and SiV charge states in the future.

    more » « less
  5. Abstract

    Solid-state spins such as nitrogen-vacancy (NV) center are promising platforms for large-scale quantum networks. Despite the optical interface of NV center system, however, the significant attenuation of its zero-phonon-line photon in optical fiber prevents the network extended to long distances. Therefore a telecom-wavelength photon interface would be essential to reduce the photon loss in transporting quantum information. Here we propose an efficient scheme for coupling telecom photon to NV center ensembles mediated by rare-earth doped crystal. Specifically, we proposed protocols for high fidelity quantum state transfer and entanglement generation with parameters within reach of current technologies. Such an interface would bring new insights into future implementations of long-range quantum network with NV centers in diamond acting as quantum nodes.

    more » « less