Recent advances in cell biology and experimental techniques using reconstituted cell extracts have generated significant interest in understanding how geometry and topology influence active fluid dynamics. In this work, we present a comprehensive continuum theory and computational method to explore the dynamics of active nematic fluids on arbitrary surfaces without topological constraints. The fluid velocity and nematic order parameter are represented as the sections of the complex line bundle of a two-manifold. We introduce the Levi–Civita connection and surface curvature form within the framework of complex line bundles. By adopting this geometric approach, we introduce a gauge-invariant discretization method that preserves the continuous local-to-global theorems in differential geometry. We establish a nematic Laplacian on complex functions that can accommodate fractional topological charges through the covariant derivative on the complex nematic representation. We formulate advection of the nematic field based on a unifying definition of the Lie derivative, resulting in a stable geometric semi-Lagrangian (sL) discretization scheme for transport by the flow. In general, the proposed surface-based method offers an efficient and stable means to investigate the influence of local curvature and global topology on the two-dimensional hydrodynamics of active nematic systems. 
                        more » 
                        « less   
                    
                            
                            Lagrangian Averaged Stochastic Advection by Lie Transport for Fluids
                        
                    
    
            Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1703997
- PAR ID:
- 10271650
- Date Published:
- Journal Name:
- Journal of Statistical Physics
- Volume:
- 179
- Issue:
- 5-6
- ISSN:
- 0022-4715
- Page Range / eLocation ID:
- 1304 to 1342
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations forline elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulsem, which has been recently bridged with flow maps to encouraging results, vorticityωpromises to be preferable for its numerical stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions.more » « less
- 
            Diverse chemical, energy, environmental, and industrial processes involve the flow of polymer solutions in porous media. The accumulation and dissipation of elastic stresses as the polymers are transported through the tortuous, confined pore space can lead to the development of an elastic flow instability above a threshold flow rate, producing a transition from steady to unsteady flow characterized by strong spatiotemporal fluctuations, despite the low Reynolds number (Re≪1). Furthermore, in 1D ordered arrays of pore constrictions, this unsteady flow can undergo a second transition to multistability, where distinct pores simultaneously exhibit distinct unsteady flow states. Here, we examine how this transition to multistability is influenced by fluid rheology. Through experiments using diverse polymer solutions having systematic variations in fluid shear-thinning or elasticity, in pore constriction arrays of varying geometries, we show that the onset of multistability can be described using a single dimensionless parameter, given sufficient fluid elasticity. This parameter, the streamwise Deborah number, compares the stress relaxation time of the polymer solution to the time required for the fluid to be advected between pore constrictions. Our work thus helps to deepen understanding of the influence of fluid rheology on elastic instabilities, helping to establish guidelines for the rational design of polymeric fluids with desirable flow behaviors.more » « less
- 
            We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data ρ ¯ ∈ H loc 1 ( R d ) , d ≥ 2 , we construct a divergence-free advecting velocity field v (depending on ρ ¯ ) for which the unique weak solution to the transport equation does not belong to H loc 1 ( R d ) for any positive time. The velocity field v is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space W s , p that does not embed into the Lipschitz class. The velocity field v is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE , 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.more » « less
- 
            Transient growth and resolvent analyses are routinely used to assess nonasymptotic properties of fluid flows. In particular, resolvent analysis can be interpreted as a special case of viewing flow dynamics as an open system in which free-stream turbulence, surface roughness, and other irregularities provide sources of input forcing. We offer a comprehensive summary of the tools that can be employed to probe the dynamics of fluctuations around a laminar or turbulent base flow in the presence of such stochastic or deterministic input forcing and describe how input–output techniques enhance resolvent analysis. Specifically, physical insights that may remain hidden in the resolvent analysis are gained by detailed examination of input–output responses between spatially localized body forces and selected linear combinations of state variables. This differentiating feature plays a key role in quantifying the importance of different mechanisms for bypass transition in wall-bounded shear flows and in explaining how turbulent jets generate noise. We highlight the utility of a stochastic framework, with white or colored inputs, in addressing a variety of open challenges including transition in complex fluids, flow control, and physics-aware data-driven turbulence modeling. Applications with temporally or spatially periodic base flows are discussed and future research directions are outlined.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    