skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-FUSE-ing STEAM learning with spatial reasoning: Distributed spatial sensemaking in school-based making activities.
Award ID(s):
1657438
PAR ID:
10158695
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Educational Psychology
Volume:
112
Issue:
3
ISSN:
0022-0663
Page Range / eLocation ID:
466 to 493
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial reasoning is an important skillset that is malleable to training interventions. One possible context for intervention is the popular video game Minecraft. Minecraft encourages users to engage in spatial manipulation of 3D objects. However, few papers have chronicled any in-game practices that might evidence spatial reasoning, or how we might study its development through the game. In this paper, we report on 11 middle school students’ spatial reasoning practices while playing Minecraft. We use audio and video data of student gameplay to delineate five in-game practices that align with spatial reasoning. We expand on a student case study, to explicate these practices. The identified practices may be beneficial for studying spatial reasoning development in game-based environments and contribute to a growing body of research on ways games support development of important and transferable skills. 
    more » « less
  2. Abstract Spatial transcriptomics (ST) technologies measure gene expression at thousands of locations within a two-dimensional tissue slice, enabling the study of spatial gene expression patterns. Spatial variation in gene expression is characterized byspatial gradients, or the collection of vector fields describing the direction and magnitude in which the expression of each gene increases. However, the few existing methods that learn spatial gradients from ST data either make restrictive and unrealistic assumptions on the structure of the spatial gradients or do not accurately model discrete transcript locations/counts. We introduce SLOPER (for Score-based Learning Of Poisson-modeled Expression Rates), a generative model for learning spatial gradients (vector fields) from ST data. SLOPER models the spatial distribution of mRNA transcripts with aninhomogeneous Poisson point process (IPPP)and usesscore matchingto learn spatial gradients for each gene. SLOPER utilizes the learned spatial gradients in a novel diffusion-based sampling approach to enhance the spatial coherence and specificity of the observed gene expression measurements. We demonstrate that the spatial gradients and enhanced gene expression representations learned by SLOPER leads to more accurate identification of tissue organization, spatially variable gene modules, and continuous axes of spatial variation (isodepth) compared to existing methods. Software availabilitySLOPER is available athttps://github.com/chitra-lab/SLOPER. 
    more » « less
  3. Little is known about fine scale neural dynamics that accompany rapid shifts in spatial attention in freely behaving animals, primarily because reliable indicators of attention are lacking in standard model organisms engaged in natural tasks.  The echolocating bat can serve to bridge this gap, as it exhibits robust dynamic behavioral indicators of overt spatial attention as it explores its environment.  In particular, the bat actively shifts the aim of its sonar beam to inspect objects in different directions, akin to eye movements and foveation in humans and other visually dominant animals. Further, the bat adjusts the temporal features of sonar calls to attend to objects at different distances, yielding a metric of acoustic gaze along the range axis. Thus, an echolocating bat’s call features not only convey the information it uses to probe its surroundings, but also provide fine scale metrics of auditory spatial attention in 3D natural tasks. These explicit metrics of overt spatial attention can be leveraged to uncover general principles of neural coding in the mammalian brain. 
    more » « less