skip to main content


Title: Spatial Reasoning in Minecraft: An Exploratory Study of In-Game Spatial Practices
Spatial reasoning is an important skillset that is malleable to training interventions. One possible context for intervention is the popular video game Minecraft. Minecraft encourages users to engage in spatial manipulation of 3D objects. However, few papers have chronicled any in-game practices that might evidence spatial reasoning, or how we might study its development through the game. In this paper, we report on 11 middle school students’ spatial reasoning practices while playing Minecraft. We use audio and video data of student gameplay to delineate five in-game practices that align with spatial reasoning. We expand on a student case study, to explicate these practices. The identified practices may be beneficial for studying spatial reasoning development in game-based environments and contribute to a growing body of research on ways games support development of important and transferable skills.  more » « less
Award ID(s):
1822865
NSF-PAR ID:
10170333
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computersupported collaborative learning
Volume:
2
ISSN:
1573-4552
Page Range / eLocation ID:
709-712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Spatial skills are consistently linked to mathematical reasoning, and are sensitive to intervention. One important spatial skill is spatial scaling. We evaluated whether (1) a playful scaling game might promote learning by providing feedback during play, and (2) spatial scaling is related to number‐line estimation (NLE) based on the mutual reliance on relative magnitude reasoning. Forty‐eight children, ages 5.5–8.3, completed a playful scaling game and a NLE task. Results show that children improve from the first to second half of the task, especially for more difficult trials and for the lowest performing children. In addition, scaling and NLE relate when controlling for age and vocabulary. Similar improvement on the task and relations to NLE were observed in a conceptual replication (N= 52). These results provide support for further study of improving spatial scaling in children, with the possibility to test whether scaling could support related mathematical skills as well.

     
    more » « less
  2. Embodied Interaction (EI) offers unique opportunities to uncover novel ways to achieve experiential learning whilst keeping students stimulated and engaged. Spatial abilities have been repeatedly demonstrated as a success predictor for educations and professions in Science, Technology, Engineering and Mathematics. However, many researchers argue that training and assessment of this pertinent reasoning skill is vastly underrepresented in the school curriculum. This paper presents TetRotation, a PhD centred on how affordances coming from Multimodal Analytics can be coupled with EI to nurture Mental Rotation (MR) skills. The overarching objectives of the project are two fold. First, the TetRotation Interaction Design study will highlight best practices identified through the assessment of efficiency, level of engagement and learning gains achieved when using gesture based EI to solve MR tasks. Next, in the TetRotation Game study, these design practices will guide the implementation of an interactive serious game purposed to support the development of MR skills. This research relies on mixed method techniques, including data collections from users' actions, like motion sensing, EEG, gaze tracking, video-recordings, click streams, interviews and surveys. 
    more » « less
  3. Abstract Background

    This paper contributes to current discussions about supporting prospective teachers (PSTs) in developing skills of noticing students’ mathematical thinking. We draw attention to PSTs’ initial noticing skills (prior to instruction focused on supporting noticing) as PSTs engage in analyzing written artifacts of student work and video-records. We examined and compared PSTs’ noticing skills as they analyzed how students reason about, generalize, and justify generalizations of figural patterns given student written work and video records. We identified aspects of student thinking about generalizations and justifications, which PSTs addressed and interpreted. We also examined how PSTs respond to students as they analyze student thinking given written artifacts of student work or video-records of small group discussions, and we identified the foci of PSTs’ responding practice.

    Results

    Our data revealed that PSTs’ initial noticing skills of student generalizations and justifications differed while accounting for ways in which student thinking was externalized (written work or video-records). PSTs’ attending-and-interpreting and their responding practices were focused on mathematically significant aspects of student thinking to a greater extent in the context of analyzing written artifacts compared to video records. While analyzing students’ written work, PSTs demonstrated greater attention to ways in which students analyzed patterns, students’ generalization strategies, and justifications linked to an understanding of the pattern structure, compared to analyzing student thinking captured via videos.

    Conclusion

    Our results document that without providing any intentional support for PSTs’ noticing skills, PSTs are more deliberate to focus on mathematically significant aspects of student thinking while analyzing written artifacts of student work compared to video-records. We believe that the analysis of student written work might demand from PSTs to be more analytical. While examining written representations, PSTs have to reconstruct students’ reasoning. Unlike the videos where the students tell or use gestures to express their thinking, written work provides fewer clues about student thinking. Thus, written work demands a deeper level of engagement from PSTs as they strive to understand student reasoning. Our study extends research on PSTs’ noticing skills by documenting differences in PSTs’ noticing in relation to the nature of artifacts of student work that PSTs analyze. Our work also adds to prior research on PSTs’ noticing by characterizing specific aspects of students’ thinking about pattern generalizations and justifications that PSTs address as they analyze student thinking and respond to students.

     
    more » « less
  4. Šķilters, J. ; Newcombe, N. ; Uttal, D. (Ed.)
    As excitement for Minecraft continues to grow, we consider its potential to function as an engaging environment for practicing and studying spatial reasoning. To support this exposition, we describe a glimpse of our current analysis of spatial reasoning skills in Minecraft. Twenty university students participated in a laboratory study that asked them to recreate three existing buildings in Minecraft. Screen captures of user actions, together with eye tracking data, helped us identify ways that students utilize perspective taking, constructing mental representations, building and place-marking, and error checking. These findings provide an initial impetus for further studies of the types of spatial skills that students may exhibit while playing Minecraft. It also introduces questions about how the design of Minecraft activities may promote, or inhibit, the use of certain spatial skills. 
    more » « less
  5. null (Ed.)
    Spatial reasoning skills contribute to performance in many STEM fields. For example, drawing sectional views of three-dimensional objects is an essential skill for engineering students. There is considerable variation in the spatial reasoning skills of prospective engineering students, putting some at risk for compromised performance in their classes. This study takes place in a first-year engineering Spatial Visualization course to integrate recent practices in engineering design education with cognitive psychology research on the nature of spatial learning. We employed three main pedagogical strategies in the course - 1) in class instruction on sketching; 2) spatial visualization training; and 3) manipulation of physical objects (CAD/3D print creations). This course endeavors to use current technology, online accessibility, and implementation of the three pedagogical strategies to bring about student growth in spatial reasoning. This study is designed to determine the effect of adding two different spatial reasoning training apps to this environment. Over 230 students (three sections) participated in our study. In two of the three sections, students received interactive spatial visualization training using either a spatial visualization mobile touchscreen app in one section or an Augmented Reality (AR) app in the other section. Research suggests that there are benefits to using the Spatial Vis Classroom mobile app for college students.The app has been shown to increase student persistence resulting in large learning gains as measured by the Purdue assessment of spatial visualization (PSVT-R), especially for students starting with poor spatial visualization skills. The Spatial Vis Classroom app can be used in the classroom or assigned as homework. The AR app is designed to help users develop their mental rotation abilities. It is designed to support a holistic understanding of 3-dimensional objects, and research has shown that, in combination with a traditional curriculum, it increases students’ abilities also measured by the PSVT-R. Of particular interest, the data suggest that the app overcomes the advantage found by males over females in a traditional class alone focused on spatial reasoning. Both of the course sections were required to use the apps for approximately the same time in class and outside of class. Students in the control section were required to do hand sketching activities in class and outside of class, with roughly the same completion time as for the sections with the apps. Students grades were not affected by using the three different approaches as grading was based on completion only. Based on current literature, we hypothesize that overall benefits (PSVT-R gains) will be comparable across the 3 treatments but there will be different effects on attitude and engagement (confidence,enjoyment, and self-efficacy). Lastly, we hypothesize that the treatments will have different effects on male/female and ethnic categories of the study participants. The final paper will include an analysis of results and a report of the findings. 
    more » « less