skip to main content


Title: Near-Surface Salinity Reveals the Oceanic Sources of Moisture for Australian Precipitation Through Atmospheric Moisture Transport
The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on inter-seasonal to inter-annual time scales, and to locate the source of moisture. Seasonal composites during El Niño Southern Oscillation/Indian Ocean Dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies towards Australia. During co-occurring La Niña and negative-IOD events, salty anomalies around the maritime continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, there is the moisture transport divergence anomaly over Australia and results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean-atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g. 2010-11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.  more » « less
Award ID(s):
1663704
NSF-PAR ID:
10158742
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer [December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E–165°W and 10°S–10°N) and SSSI (50°–95°E and 10°S–10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle. 
    more » « less
  2. Abstract

    Climatic controls regulate the coupled natural and human systems in coastal Tanzania, where mangrove wetlands provide a wealth of ecosystem services to coastal communities. Previous research has explained the precipitation seasonality of eastern Africa in terms of the local monsoons. This research examines a wider range of hydroclimatic variables, including water vapour flux, evapotranspiration, runoff, and ocean salinity, and the sources of low‐frequency atmosphere–ocean variability that support mangrove productivity and associated ecosystem services. Results confirm previous work suggesting that the northeast monsoon (kaskazi) largely corresponds to the “short rains” of October–December and extends through February, while the southeast monsoon (kusi) corresponds to the “long rains” of March–May and the drier June–September. The Indian Ocean Dipole (IOD) and, to a lesser extent, El Niño–Southern Oscillation (ENSO) are important modulators not only of precipitation (as has been shown previously) but also of water vapour flux, evapotranspiration, runoff, and salinity variability. Duringkaskazi, positive (negative) hydroclimatic anomalies occur during positive (negative) IOD, with a stronger IOD influence occurring during its positive phase, when seasonal anomalies of precipitation, evapotranspiration, and runoff exceed +50, 25, and 100%, and nearby salinity decreases by 0.5 practical salinity units. Duringkusi, the contrast between the positive and negative IOD modes is subtler, and the pattern is dictated more by variability in “long rains” months than in the dry months. The coincidence of the positive IOD and El Niño amplify this hydroclimatic signal. Because previous work suggests the likelihood of increased tendency for positive IOD and increased moisture variability associated with El Niño events in the future, wetter conditions may accompany thekaskazi, with less change expected during thekusi. These results advance understanding of the key environmental drivers controlling mangrove productivity and wetland spatial distribution that provide ecosystem services essential to the well‐being of the human population.

     
    more » « less
  3. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  4. The South Pacific convergence zone (SPCZ) exhibits well-known spatial displacements in response to anomalous sea surface temperatures (SSTs) associated with the El Niño–Southern Oscillation (ENSO). Although dynamic and thermodynamic changes during ENSO events are consistent with observed SPCZ shifts, explanations for these displacements have been largely qualitative. This study applies a theoretical framework based on generalizing arguments about the relationship between the zonal-mean intertropical convergence zone (ITCZ) and atmospheric energy transport (AET) to 2D, permitting quantification of SPCZ displacements during ENSO. Using either resolved atmospheric energy fluxes or estimates of column-integrated moist energy sources, this framework predicts well the observed SPCZ shifts during ENSO, at least when anomalous ENSO-region SSTs are relatively small. In large-amplitude ENSO events, such as the 1997/98 El Niño, the framework breaks down because of the large change in SPCZ precipitation intensity. The AET framework permits decomposition of the ENSO forcing into various components, such as column radiative heating versus surface turbulent fluxes, and local versus remote contributions. Column energy source anomalies in the equatorial central and eastern Pacific dominate the SPCZ shift. Furthermore, although the radiative flux anomaly is larger than the surface turbulent flux anomaly in the SPCZ region, the radiative flux anomaly, which can be viewed as a feedback on the ENSO forcing, accounts for slightly less than half of SPCZ precipitation anomalies during ENSO. This study also introduces an idealized analytical model used to illustrate AET anomalies during ENSO and to obtain a scaling for the SPCZ response to an anomalous equatorial energy source.

     
    more » « less
  5. Abstract

    The summer North American dipole (NAD) is a pattern of climate variability linked to variations in boreal forest seed production and migration of seed-eating birds. This is a modeling investigation of two teleconnections identified as drivers of the NAD in prior observational work: 1) tropically sourced atmospheric Rossby waves associated with anomalies in the phase distribution of the Madden–Julian oscillation (MJO) (i.e., phases 1 and 6 are anomalously prominent), and 2) a pan-Pacific atmospheric Rossby wave linked to East Asian monsoonal (EAM) convection. Sea surface temperature (SST) boundary forcing experiments were conducted with the Community Earth System Model 2 (CESM2) to trigger convection patterns that align with those observed during EAM and nonuniform phase distributions of MJO. For the EAM case, an El Niño–like SST dipole pattern combined with cool southern Japan SST forcing produced a convection and jet stream shift anomaly over East Asia and the northern Pacific with a positive NAD pattern downstream over North America, similar to the observed pattern when precipitation over East Asia (PEA) is relatively high. A companion experiment with only ENSO-like SST forcing also produced the NAD but featured a different structure over the Eurasian continent with a response resembling the summer east Atlantic (SEA) pattern over eastern North America and the eastern Atlantic. Simulation results suggest that the southern Japan SST forcing region has a secondary importance in triggering the NAD, producing only a somewhat NAD-like pattern by itself and only slightly improving the NAD produced by ENSO-like forcing. Simulations using SST forcing to induce seasonal convection anomalies with spatial patterns similar to anomalously frequent occurrence of MJO phase 1 (phase 6) produced circulation response patterns resembling the positive NAD (negative NAD).

     
    more » « less