skip to main content


Title: Continuous Flow Process for Removal and Recovery of Water Contaminants with Magnetic Nanocomposites
Many natural water sources and industrial wastewaters contain low concentrations of metals and other contaminants. Therefore, an efficient and economical method for low-level contaminant removal and recovery is needed. The purpose of the research is to improve and modify a newly developed continuous flow ion exchange process for expansion to a variety of non-industrial applications, including removal of metal ions from the Upper Clark Fork River Watershed. The process involves a dual column reactor designed to capture metal ions using 90–105 μm spherical, functionalized silica gel coated magnetite particles, targeting copper ions with future expansion to additional metals, such as manganese and zinc. The optimization of nanoparticle synthesis and dispersion is ongoing with variables that include pH, metal ion concentration, nanoparticle concentration, and temperature. Additional focus involves maximizing contaminant capture, with current values of 0.19 mmol Cu/g Fe3O4 for magnetite and 0.25 mmol Cu/g Fe3O4 for silica-coated magnetite.  more » « less
Award ID(s):
1757351
NSF-PAR ID:
10158833
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The minerals metals materials series
ISSN:
2367-1181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The new material polypyrrole/MoS42−(MoS4‐Ppy), prepared by ion‐exchange of NO3‐ of NO3‐Ppy with MoS42−, displays high acid stability and excellent uptake for heavy metal ions such as Hg2+, Ag+, Cu2+, and Pb2+. The different maximum adsorption capacities (qm) for Cu2+, Pb2+, Hg2+, and Ag+depend on the various binding modes arising from the different thiophilicity of these metal ions. The removals of Ag+and Pb2+reach >99.6% within 5 min, and for highly toxic Hg2+, >98% removal achieves at 1 min. At strong acid limit, the exceptionalqm(Ag+) of 725 mg g−1places the MoS4‐Ppy at the top of materials for such removal. Uptake kinetics of Ag+, Hg2+, and Pb2+is extremely fast: >99.9% removal rates at wide pH range (0.5–6) within 1–5 min. Also, at strongly acidic conditions (pH ≈ 1), for highly toxic Hg2+, <2 ppb concentration can be achieved, accepted as safe limit. The MoS4‐Ppy demonstrates an outstanding ability to separate low‐concentrated Ag+from high concentrated Cu2+especially under strong acidic conditions (pH ≈ 1), showing a large separation factor SFAg/Cu(KdAg/KdCu) of 105(>100). MoS4‐Ppy is a superior and novel sorbent material for water remediation applications as well as precious metals recovery.

     
    more » « less
  2. Capacitive deionization (CDI) technologies have gained intense attention for water purification and desalination in recent years. Inexpensive and widely available porous carbon materials have enabled the fast growth of electrosorption research, highlighting the promise of CDI as a potentially cost-effective technology to remove ions. Whereas the main focus of CDI has been on bulk desalination, there has been a recent shift towards electrosorption for selective ion separations. Heavy metals are pollutants that can have severe health impacts and are present in both industrial wastewater and groundwater leachates. Heavy metal ions, such as chromium, cadmium, or arsenic, are of great concern to traditional treatment technologies, due to their low concentration and the presence of competing species. The modification/functionalization of porous carbon and recent developments of faradaic and redox-active materials have offered a new avenue for selective ion-binding of heavy metal contaminants. Here, we review the progress in electrosorptive technologies for heavy metal separations. We provide an overview of the wide applicability of carbon-based electrodes for heavy metal removal. In parallel, we highlight the trend toward modification of carbon materials, new developments in faradaic interfaces, and the underlying physico-chemical mechanisms that promote selective heavy metal separations. 
    more » « less
  3. null (Ed.)
    Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg( ii ) and Pb( ii ) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg( ii ) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg( ii ) with a capacity of 651 mg g −1 and very fast kinetics resulting in a 100% removal of Hg( ii ) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb( ii ) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb( ii ) with a capacity of 681 mg g −1 and 1000 mg g −1 using an adsorbent dose of 1 g L −1 and 2 g L −1 , respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb( ii ) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L −1 . In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb( ii ), 99% for Hg( ii ), Cd( ii ) and Zn( ii ), 94% for Cu( ii ), and 90% for Ni( ii ) while at a higher concentration of 250 ppm the removal efficiency for Pb( ii ) is 95% compared to 23% for Hg( ii ) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg( ii ) and Pb( ii ), respectively from contaminated water. 
    more » « less
  4. Abstract

    The effective removal of complex pollutants is extremely challenging for environmental and material science, especially pollutants including detergents and pesticides do not decompose or degrade in the aquatic environment which cannot be easily removed. Here, a novel biocompatible superparamagnetic nanocomposite integrating the advantages of porous silicon nanoparticles is developed, the chelation ability of chitosan, and graphene‐oxide‐iron that can simultaneously adsorb complex hydrophobic and hydrophilic pollutants on their internal and external surfaces which have significantly improved pollutant removal efficiency over the current existing methods. A porous silicon nanoparticle (PSi) conjugated magnetite‐chitosan‐reduced graphene oxide (MCRGO) nanoparticles (PSi‐MCRGO) are synthesized for complete removal of detergent, pesticide, and toxic heavy metals cadmium and lead ions from water at a favorable room temperature. The adsorption behavior of the nanocomposites fits well with the Freundlich isotherm and pseudo‐second‐order kinetics model by adsorption mechanism. Moreover, the fresh and recycled nanocomposites are easily separated by an external magnetic field for reusability due to super magnetite response and show high binding capacity for toxic heavy metal ions. Furthermore, the nanocomposites are biocompatible and reusable, and for the fourth time, recycled nanocomposites can completely remove toxic heavy metals. Overall, the novel nanocomposites completely remove complex pollutants which hold great potential for real water treatment.

     
    more » « less
  5. Abstract

    Increasing trends in base cations, pH, and salinity of freshwaters have been documented in US streams over 50 years. These patterns, collectively known as freshwater salinization syndrome (FSS), are driven by multiple processes, including applications of road salt and human-accelerated weathering of impervious surfaces, reductions in acid rain, and other anthropogenic legacies of change. FSS mobilizes chemical cocktails of distinct elemental mixtures via ion exchange, and other biogeochemical processes. We analyzed impacts of FSS on streamwater chemistry across five urban watersheds in the Baltimore-Washington, USA metropolitan region. Through combined grab-sampling and high-frequency monitoring by USGS sensors, regression relationships were developed among specific conductance and major ion and trace metal concentrations. These linear relationships were statistically significant in most of the urban streams (e.g.R2= 0.62 and 0.43 for Mn and Cu, respectively), and showed that specific conductance could be used as a proxy to predict concentrations of major ions and trace metals. Major ions and trace metals analyzed via linear regression and principal component analysis showed co-mobilization (i.e. correlations among combinations of specific conductance (SC), Mn, Cu, Sr2+, and all base cations during certain times of year and hydrologic conditions). Co-mobilization of metals and base cations was strongest during peak snow events but could continue over 24 h after SC peaked, suggesting ongoing cation exchange in soils and stream sediments. Mn and Cu concentrations predicted from SC as a proxy indicated acceptable goodness of fit for predictedvs.observed values (Nash–Sutcliffe efficiency > 0.28). Metals concentrations remained elevated for days after SC decreased following snowstorms, suggesting lag times and continued mobilization after road salt use. High-frequency sensor monitoring and proxies associated with FSS may help better predict contaminant pulses and contaminant exceedances in response to salinization and impacts on aquatic life, infrastructure, and drinking water.

     
    more » « less