skip to main content


Title: Microfiber Optic Arrays as Top Coatings for Front-Contact Solar Cells toward Mitigation of Shading Loss
Microfiber optic array structures are fabricated and employed as an optical structure overlaying a front-contact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in short-circuit current density up to 1.13 mA/cm2. This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process.  more » « less
Award ID(s):
1903592 1751621
NSF-PAR ID:
10158860
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACS applied materials interfaces
Volume:
11
Issue:
50
ISSN:
1944-8244
Page Range / eLocation ID:
47422–47427
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here presented are the properties and performance of a new metallo‐dielectric waveguide array structure as the encapsulation material for silicon solar cells. The arrays are produced through light‐induced self‐writing combined with in situ photochemical synthesis of silver nanoparticles. Each waveguide comprises a cylindrical core consisting of a high refractive index polymer and silver nanoparticles homogenously dispersed in its medium, all of which are surrounded by a low refractive index common cladding. The waveguide array‐based films are processed directly over a silicon solar cell. Arrays with systematically varied concentration of AgSbF6 as the salt precursor are explored. The structures are tested for their wide‐angle light capture capabilities, specifically toward enhanced conversion efficiency and current production of encapsulated solar cells. Observed are increases in the external quantum efficiency, especially at wide incident angles up to 70°, and nominal increases in the short circuit current density by 1 mA cm−2 (relative to an array without nanoparticles). Enhanced light collection is explained in terms of the beneficial effect of scattering by the nanoparticles along the waveguide cores. This is a promising approach toward solar cell encapsulants that aid to increase solar cell output over both the course of the day and year. 
    more » « less
  2. Abstract

    Here presented are the properties and performance of a new metallo‐dielectric waveguide array structure as the encapsulation material for silicon solar cells. The arrays are produced through light‐induced self‐writing combined with in situ photochemical synthesis of silver nanoparticles. Each waveguide comprises a cylindrical core consisting of a high refractive index polymer and silver nanoparticles homogenously dispersed in its medium, all of which are surrounded by a low refractive index common cladding. The waveguide array‐based films are processed directly over a silicon solar cell. Arrays with systematically varied concentration of AgSbF6as the salt precursor are explored. The structures are tested for their wide‐angle light capture capabilities, specifically toward enhanced conversion efficiency and current production of encapsulated solar cells. Observed are increases in the external quantum efficiency, especially at wide incident angles up to 70°, and nominal increases in the short circuit current density by 1 mA cm−2(relative to an array without nanoparticles). Enhanced light collection is explained in terms of the beneficial effect of scattering by the nanoparticles along the waveguide cores. This is a promising approach toward solar cell encapsulants that aid to increase solar cell output over both the course of the day and year.

     
    more » « less
  3. Dye-sensitized solar cells (DSSCs) hold unique promise in solar photovoltaics owing to their low-cost fabrication and high efficiency in ambient conditions. However, to improve their commercial viability, effective, and low-cost methods must be employed to enhance their light harvesting capabilities, and hence photovoltaic (PV) performance. Improving the absorption of incoming light is a critical strategy for maximizing solar cell efficiency while overcoming material limitations. Mesoporous silica nanoparticles (MSNs) were employed herein as a reflective layer on the back of transparent counter electrodes. Chemically synthesized MSNs were applied to DSSCs via bar coating as a facile fabrication step compatible with roll-to-roll manufacturing. The MSNs diffusely scatter the unused incident light transmitted through the DSSCs back into the photoactive layers, increasing the absorption of light by N719 dye molecules. This resulted in a 20% increase in power conversion efficiency (PCE), from 5.57% in a standard cell to 6.68% with the addition of MSNs. The improved performance is attributed to an increase in photon absorption which led to the generation of a higher number of charge carriers, thus increasing the current density in DSSCs. These results were corroborated with electrochemical impedance spectroscopy (EIS), which showed improved charge transport kinetics. The use of MSNs as reflectors proved to be an effective practical method for enhancing the performance of thin film solar cells. Due to silica’s abundance and biocompatibility, MSNs are an attractive material for meeting the low-cost and non-toxic requirements for commercially viable integrated PVs. 
    more » « less
  4. null (Ed.)
    Methylammonium lead iodide (MAPbI 3 ) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI 3 perovskite powders. The microstructure morphology of the MAPbI 3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K ( k B T = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI 3 . The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range. 
    more » « less
  5. We theoretically study the spectral characteristics and noise performance of wavelength-interrogated fiber-optic sensors based on an extrinsic Fabry–Perot (FP) interferometer (EFPI) formed by thin metal mirrors. We develop a model and use it to analyze the effect of key sensor parameters on the visibility and spectral width of the sensors, including the beam width of the incident light, metal coating film thickness, FP cavity length, and wedge angle of the two mirrors. Through Monte Carlo simulations, we obtain an empirical equation that can be used to estimate the wavelength resolution from the visibility and spectral width, which can be used as a figure-of-merit that is inherent to the sensor and independent on the system noises. The work provides a useful tool for designing, constructing, and interrogating high-resolution fiber-optic EFPI sensors.

     
    more » « less