Microfiber optic array structures are fabricated and employed as an optical structure overlaying a front-contact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in short-circuit current density up to 1.13 mA/cm2. This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process.
more »
« less
Direct Light‐Writing of Nanoparticle‐Based Metallo‐Dielectric Optical Waveguide Arrays Over Silicon Solar Cells for Wide‐Angle Light Collecting Modules
Here presented are the properties and performance of a new metallo‐dielectric waveguide array structure as the encapsulation material for silicon solar cells. The arrays are produced through light‐induced self‐writing combined with in situ photochemical synthesis of silver nanoparticles. Each waveguide comprises a cylindrical core consisting of a high refractive index polymer and silver nanoparticles homogenously dispersed in its medium, all of which are surrounded by a low refractive index common cladding. The waveguide array‐based films are processed directly over a silicon solar cell. Arrays with systematically varied concentration of AgSbF6 as the salt precursor are explored. The structures are tested for their wide‐angle light capture capabilities, specifically toward enhanced conversion efficiency and current production of encapsulated solar cells. Observed are increases in the external quantum efficiency, especially at wide incident angles up to 70°, and nominal increases in the short circuit current density by 1 mA cm−2 (relative to an array without nanoparticles). Enhanced light collection is explained in terms of the beneficial effect of scattering by the nanoparticles along the waveguide cores. This is a promising approach toward solar cell encapsulants that aid to increase solar cell output over both the course of the day and year.
more »
« less
- PAR ID:
- 10158853
- Date Published:
- Journal Name:
- Advanced optical materials
- Volume:
- 7
- ISSN:
- 2195-1071
- Page Range / eLocation ID:
- 1900661
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide‐range transparency window. It is known that a higher concentration of Si in silicon‐rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade‐off, four‐wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma‐enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C‐band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous‐wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two‐photon absorption. Finally, the third‐order susceptibility and the nonlinear refractive index are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as and are estimated in a waveguide with an SRN refractive index of 3.2.more » « less
-
A new approach is reported to fabricate micropillar arrays on transparent surfaces by employing the light‐induced self‐writing technique. A periodic array of microscale optical beams is transmitted through a thin film of photo‐crosslinking acrylate resin. Each beam undergoes self‐lensing associated to photopolymerization‐induced changes in the refractive index of the medium, which counters the beam's natural tendency to diverge over space. As a result, a microscale pillar grows along each beam's propagation path. Concurrent, parallel self‐writing of micropillars leads to the prototyping of micropillar‐based arrays, with the capability to precisely vary the pillar diameter and inter‐spacing. The arrays are spray coated with a thin layer of polytetrafluoroethylene (PTFE) nanoparticles to create large‐area superhydrophobic surfaces with water contact angles greater than 150° and low contact angle hysteresis. High transparency is achieved over the entire range of micropillar arrays explored. The arrays are also mechanically durable and robust against abrasion. This is a scalable, straightforward approach toward structure‐tunable micropillar arrays for functional surfaces and anti‐wetting applications.more » « less
-
We report the realization of efficiently coupled 3D tapered waveguide-to-fiber couplers (TWCs) based on standard lithography techniques. The 3D TWC design is capable of achieving highly efficient flat-cleaved fiber to silicon nitride photonic waveguide coupling, withT ≈ 95 % polarization-insensitive coupling efficiency, wide bandwidth, and good misalignment tolerance. Our fabricated 3D TWCs on a functional nanophotonic circuit achieveT ≈ 85% coupling efficiency. Beyond applications in high-efficiency photon coupling, the demonstrated 3D lithography technique provides a complementary approach for mode field shaping and effective refractive index engineering, potentially useful for general applications in integrated photonic circuits.more » « less
-
De_Angelis, Filippo (Ed.)An integration of perovskite and cadmium telluride (CdTe) solar cells in a tandem configuration has the potential to yield efficient thin-film tandem solar cells. Owing to the promise of higher efficiency at low cost, the presented study aims to explore the potential for combining this commercially established CdTe photovoltaics (PV) with next-generation perovskite PV. Here, we developed four-terminal (4-T) CdTe/perovskite tandem solar cells, starting with 18.3% efficient near-infrared-transparent perovskite solar cells (NIR-TPSCs) with an average transmission (Tavg) of 24.76% in the 300−900 nm wavelength range. These were then integrated with 19.56% efficient opaque CdTe solar cells, achieving 23.42% efficiency in a 4-T tandem configuration. Additionally, using a refractive index matching liquid increases the overall power conversion efficiency (PCE)to 24.2%. This pioneering achievement marks the first instance of a 4-T CdTe/perovskite thin-film tandem solar cell exceeding a PCE of 24.2%, a significant 123.72% increase in overall PCE.more » « less
An official website of the United States government

