skip to main content


Title: Analysis of single-mode fiber-optic extrinsic Fabry–Perot interferometric sensors with planar metal mirrors

We theoretically study the spectral characteristics and noise performance of wavelength-interrogated fiber-optic sensors based on an extrinsic Fabry–Perot (FP) interferometer (EFPI) formed by thin metal mirrors. We develop a model and use it to analyze the effect of key sensor parameters on the visibility and spectral width of the sensors, including the beam width of the incident light, metal coating film thickness, FP cavity length, and wedge angle of the two mirrors. Through Monte Carlo simulations, we obtain an empirical equation that can be used to estimate the wavelength resolution from the visibility and spectral width, which can be used as a figure-of-merit that is inherent to the sensor and independent on the system noises. The work provides a useful tool for designing, constructing, and interrogating high-resolution fiber-optic EFPI sensors.

 
more » « less
Award ID(s):
1918074
PAR ID:
10292243
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
26
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 7894
Size(s):
Article No. 7894
Sponsoring Org:
National Science Foundation
More Like this
  1. Wavelength tracking is a commonly used method for demodulating fiber-optic Fabry–Perot interferometric sensors due to its high resolution and straightforward implementation. We report the observation of random spurious jumps in a commonly used wavelength-tracking method based on curve fitting. These jumps were unrelated to the phase ambiguity of the spectral fringes and led to measurement errors. We analyzed the origin of the spurious jumps through Monte Carlo simulations where the fringe valley positions were obtained using polynomial curve fittings. The simulation results show that the spurious jumps arose mainly from the systematic errors of the curve-fitting function for modeling the sensor spectrum and manifested themselves by the changes in the pixel set for curve fitting. The centroid method also suffered from the spurious jumps. We proposed a modified correlation demodulation method free of the spurious jumps. In this method, the information of the measurand was obtained through the correlation between the measured sensor spectral frames and a sufficiently large number of calibrated frames of the sensor over the measurement range. The simulation and experimental results show that the modified correlation method was free of the spurious jumps encountered in the regular wavelength tracking. The resolution of the method was also studied and compared with the curve-fitting method.

     
    more » « less
  2. Fiber optic bundles are used in narrow-diameter medical and industrial instruments for acquiring images from confined locations. Images transmitted through these bundles contain only one pixel of information per fiber core and fail to capture information from the cladding region between cores. Both factors limit the spatial resolution attainable with fiber bundles. We show here that computational imaging (CI) can be combined with spectral coding to overcome these two fundamental limitations and improve spatial resolution in fiber bundle imaging. By acquiring multiple images of a scene with a high-resolution mask pattern imposed, up to 17 pixels of information can be recovered from each fiber core. A dispersive element at the distal end of the bundle imparts a wavelength-dependent lateral shift on light from the object. This enables light that would otherwise be lost at the inter-fiber cladding to be transmitted through adjacent fiber cores. We experimentally demonstrate this approach using synthetic and real objects. Using CI with spectral coding, object features 5× smaller than individual fiber cores were resolved, whereas conventional imaging could only resolve features at least 1.5× larger than each core. In summary, CI combined with spectral coding provides an approach for overcoming the two fundamental limitations of fiber optic bundle imaging.

     
    more » « less
  3. We demonstrate the fabrication of fiber-optic Fabry–Perot interferometer (FPI) temperature sensors by bonding a small silicon diaphragm to the tip of an optical fiber using low melting point glass powders heated by a 980 nm laser on an aerogel substrate. The heating laser is delivered to the silicon FPI using an optical fiber, while the silicon temperature is being monitored using a 1550 nm white-light system, providing localized heating with precise temperature control. The use of an aerogel substrate greatly improves the heating efficiency by reducing the thermal loss of the bonding parts to the ambient environment. A desirable temperature for bonding can be achieved with relatively small heating laser power. The bonding process is carried out in an open space at room temperature for convenient optical alignment. The precise temperature control ensures minimum perturbation to the optical alignment and no induced thermal damage to the optical parts during the bonding process. For demonstration, we fabricated a low-finesse and high-finesse silicon FPI sensor and characterized their measurement resolution and temperature capability. The results show that the fabrication method has a good potential for high-precision fabrication of fiber-optic sensors.

     
    more » « less
  4. Abstract

    Tunable metal–insulator–metal (MIM) Fabry–Pérot (FP) cavities that can dynamically control light enable novel sensing, imaging and display applications. However, the realization of dynamic cavities incorporating stimuli‐responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation. To overcome these challenges, a new tuning mechanism employing reversible mechanical adaptations of a polymer network is proposed, and dynamic tuning of optical resonances is demonstrated. Solid‐state temperature‐responsive optical coatings are developed by preparing a monodomain nematic liquid crystalline network (LCN) and are incorporated between metallic mirrors to form active optical microcavities. LCN microcavities offer large, reversible and highly linear spectral tuning of FP resonances reaching wavelength‐shifts up to 40 nm via thermomechanical actuation while featuring outstanding repeatability and precision over more than 100 heating–cooling cycles. This degree of tunability allows for reversible switching between the reflective and the absorbing states of the device over the entire visible and near‐infrared spectral regions, reaching large changes in reflectance with modulation efficiency ΔR = 79%.

     
    more » « less
  5. Abstract

    Metamaterial perfect absorbers (MPAs) are artificial materials composed of an array of subwavelength structures that manipulate electromagnetic waves to achieve extraordinary light absorption properties. Driven by the advent of the Internet of Things, MPAs are employed in microelectromechanical systems for the development of efficient and miniaturized IR detectors, imagers, and spectrometers, thanks to their lithographically tunable peak absorption, spectral selectivity, and ultrathin thickness. MPAs characterized by high absorptance in narrow spectral bands are particularly desirable for the implementation of high‐resolution IR spectroscopic sensors. Yet, no accurate analytical model is currently available to guide the design of an MPA with ultra‐narrow absorption bandwidth, while meeting all the stringent requirements for spectroscopic sensors. Here, a circuit model capable of accurately predicting spectral responses of metal–insulator–metal (MIM) IR absorbers is reported. The model is experimentally validated in the mid‐wavelength IR spectral range and exploited for the first demonstration of an MIM IR absorber that exhibits performance approaching the predicted physical limits: full‐width at half‐maximum ≈3% and near‐unity absorption (η > 99.7%) at 5.83 µm wavelength, while independent of incident angle and polarization of the impinging IR radiation. These unprecedented absorption properties are key enablers for the development of miniaturized, low‐cost, and high‐resolution spectrometers.

     
    more » « less