skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SciTokens SSH: Token-based Authentication for Remote Login to Scientific Computing Environments
SciTokens SSH is a pluggable authentication module (PAM) that uses JSON Web Tokens (JWTs) for authentication to the Secure Shell (SSH) remote login service. SciTokens SSH supports multiple token issuers with local token verification, so scientific computing providers are not forced to rely on a single OAuth server for token issuance and verification. The decentralized design for SciTokens SSH was motivated by the distributed nature of scientific computing environments, where scientists use computational resources from multiple providers, with a variety of security policies, distributed across the globe.  more » « less
Award ID(s):
1738962
PAR ID:
10158905
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems. 
    more » « less
  2. The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. SciTokens introduces a capabilities-based authorization infrastructure for distributed scientific computing, to help scientists manage their security credentials more reliably and securely. SciTokens uses IETF-standard OAuth JSON Web Tokens for capability-based secure access to remote scientific data. These access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems. In this extended abstract, we present the results over the past year of our open source implementation of the SciTokens model and its deployment in the Open Science Grid, including new OAuth support added in the HTCondor 8.8 release series. 
    more » « less
  3. null (Ed.)
    Authentication has become increasingly ubiquitous for controlling access to personal computing devices (e.g., laptops, tablets, and smartphones). In this paper, we aim to understand the authentication process used by people with upper extremity impairment (UEI). A person with UEI lacks range of motion, strength, endurance, speed, and/or accuracy associated with arms, hands, or fingers. To this end, we conducted semi-structured interviews with eight (8) adults with UEI about their use of authentication for their personal computing devices. We found that our participants primarily use passwords and PINs as a verification credential during authentication. We found the process of authentication to have several accessibility issues for our participants. Consequently, our participants implemented a variety of workarounds that prioritized usability over security throughout the authentication process. Based on these findings, we present six broad subareas of research that should be explored in order to create more accessible authentication for people with UEI. 
    more » « less
  4. The unauthorized usage of various services and resources in cloud computing is something that must be protected against. Authentication and access control are the most significant concerns in cloud computing. Several researchers in this field suggest numerous approaches to enhance cloud authentication towards robustness. User names and associated passwords have been a common practice for long as Single Factor Authentication. However, advancements in the speed of computing and the usage of simple methods, starting from the Brute Force technique to the implementation of advanced and efficient crytographic algorithms, have posed several threats and vulnerabilities for authentication systems, leading to the degradation of their effectiveness. Multi-factor authentication has emerged as a robust means of securing the cloud using simultaneous and multiple means of authentication factors. This employs multiple levels of cascaded authentication checks. This paper covers an extensive and systematic survey of various factors towards their adoption and suitability for authentication for multi-factor authentication mechanisms. The inference drawn from the survey is in terms of arriving at a unique authentication factor that does not require any additional, specialized hardware or software for multi-factor authentication. Such authentication also uses the distinct biometric characteristics of the concerned user in the process. This arrangement augments the secured and robust user authentication process. The mechanism is also assessed as an effective means against impersonation attacks. 
    more » « less
  5. Authentication and integrity are fundamental security services that are critical for any viable system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive, and therefore their safe and reliable operation requires delay-aware authentication mechanisms. Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy computations or lack scalability for such large and distributed systems. Hence, there is a crucial need for digital signature schemes that can satisfy the requirements of delay-aware applications. In this paper, we propose a new digital signature scheme that we refer to as Compact Energy and Delay-aware Authentication (CEDA). In CEDA, signature generation and verification only require a small-constant number of multiplications and Pseudo Random Function (PRF) calls. Therefore, it achieves the lowest end-to-end delay among its counterparts. Our implementation results on an ARM processor and commodity hardware show that CEDA has the most efficient signature generation on both platforms, while offering a fast signature verification. Among its delay-aware counter-parts, CEDA has a smaller private key with a constant-size signature. All these advantages are achieved with the cost of a larger public key. This is a highly favorable trade-0ff for applications wherein the verffier is not memory-limited. We open-sourced our implementation of CEDA to enable its broad testing and adaptation. 
    more » « less