skip to main content

Title: Adaptive Feature Redundancy Minimization
Most existing feature selection methods select the top-ranked features according to certain criterion. However, without considering the redundancy among the features, the selected ones are frequently highly correlated with each other, which is detrimental to the performance. To tackle this problem, we propose a framework regarding adaptive redundancy minimization (ARM) for the feature selection. Unlike other feature selection methods, the proposed model has the following merits: (1) The redundancy matrix is adaptively constructed instead of presetting it as the priori information. (2) The proposed model could pick out the discriminative and nonredundant features via minimizing the global redundancy of the features. (3) ARM can reduce the redundancy of the features from both supervised and unsupervised perspectives.  more » « less
Award ID(s):
1947135 1651203 1715385 2003924
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
2417 to 2420
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sensitivity analysis is a popular feature selection approach employed to identify the important features in a dataset. In sensitivity analysis, each input feature is perturbed one-at-a-time and the response of the machine learning model is examined to determine the feature's rank. Note that the existing perturbation techniques may lead to inaccurate feature ranking due to their sensitivity to perturbation parameters. This study proposes a novel approach that involves the perturbation of input features using a complex-step. The implementation of complex-step perturbation in the framework of deep neural networks as a feature selection method is provided in this paper, and its efficacy in determining important features for real-world datasets is demonstrated. Furthermore, the filter-based feature selection methods are employed, and the results obtained from the proposed method are compared. While the results obtained for the classification task indicated that the proposed method outperformed other feature ranking methods, in the case of the regression task, it was found to perform more or less similar to that of other feature ranking methods.

    more » « less
  2. null (Ed.)
    Abstract Background Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at . Results In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets. 
    more » « less
  3. The increasing uncertainty of distributed energy resources promotes the risks of transient events for power systems. To capture event dynamics, Phasor Measurement Unit (PMU) data is widely utilized due to its high resolutions. Notably, Machine Learning (ML) methods can process PMU data with feature learning techniques to identify events. However, existing ML-based methods face the following challenges due to salient characteristics from both the measurement and the label sides: (1) PMU streams have a large size with redundancy and correlations across temporal, spatial, and measurement type dimensions. Nevertheless, existing work cannot effectively uncover the structural correlations to remove redundancy and learn useful features. (2) The number of event labels is limited, but most models focus on learning with labeled data, suffering risks of non-robustness to different system conditions. To overcome the above issues, we propose an approach called Kernelized Tensor Decomposition and Classification with Semi-supervision (KTDC-Se). Firstly, we show that the key is to tensorize data storage, information filtering via decomposition, and discriminative feature learning via classification. This leads to an efficient exploration of structural correlations via high-dimensional tensors. Secondly, the proposed KTDC-Se can incorporate rich unlabeled data to seek decomposed tensors invariant to varying operational conditions. Thirdly, we make KTDC-Se a joint model of decomposition and classification so that there are no biased selections of the two steps. Finally, to boost the model accuracy, we add kernels for non-linear feature learning. We demonstrate the KTDC-Se superiority over the state-of-the-art methods for event identification using PMU data. 
    more » « less
  4. Multimodal data fusion is one of the current primary neuroimaging research directions to overcome the fundamental limitations of individual modalities by exploiting complementary information from different modalities. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are especially compelling modalities due to their potentially complementary features reflecting the electro-hemodynamic characteristics of neural responses. However, the current multimodal studies lack a comprehensive systematic approach to properly merge the complementary features from their multimodal data. Identifying a systematic approach to properly fuse EEG-fNIRS data and exploit their complementary potential is crucial in improving performance. This paper proposes a framework for classifying fused EEG-fNIRS data at the feature level, relying on a mutual information-based feature selection approach with respect to the complementarity between features. The goal is to optimize the complementarity, redundancy and relevance between multimodal features with respect to the class labels as belonging to a pathological condition or healthy control. Nine amyotrophic lateral sclerosis (ALS) patients and nine controls underwent multimodal data recording during a visuo-mental task. Multiple spectral and temporal features were extracted and fed to a feature selection algorithm followed by a classifier, which selected the optimized subset of features through a cross-validation process. The results demonstrated considerably improved hybrid classification performance compared to the individual modalities and compared to conventional classification without feature selection, suggesting a potential efficacy of our proposed framework for wider neuro-clinical applications.

    more » « less
  5. Abstract

    Photospheric magnetic field parameters are frequently used to analyze and predict solar events. Observation of these parameters over time, i.e., representing solar events by multivariate time-series (MVTS) data, can determine relationships between magnetic field states in active regions and extreme solar events, e.g., solar flares. We can improve our understanding of these events by selecting the most relevant parameters that give the highest predictive performance. In this study, we propose a two-step incremental feature selection method for MVTS data using a deep-learning model based on long short-term memory (LSTM) networks. First, each MVTS feature (magnetic field parameter) is evaluated individually by a univariate sequence classifier utilizing an LSTM network. Then, the top performing features are combined to produce input for an LSTM-based multivariate sequence classifier. Finally, we tested the discrimination ability of the selected features by training downstream classifiers, e.g., Minimally Random Convolutional Kernel Transform and support vector machine. We performed our experiments using a benchmark data set for flare prediction known as Space Weather Analytics for Solar Flares. We compared our proposed method with three other baseline feature selection methods and demonstrated that our method selects more discriminatory features compared to other methods. Due to the imbalanced nature of the data, primarily caused by the rarity of minority flare classes (e.g., the X and M classes), we used the true skill statistic as the evaluation metric. Finally, we reported the set of photospheric magnetic field parameters that give the highest discrimination performance in predicting flare classes.

    more » « less