skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Dendrochronology to Allometry
The contribution of tree-ring analysis to other fields of scientific inquiry with overlapping interests, such as forestry and plant population biology, is often hampered by the different parameters and methods that are used for measuring growth. Here I present relatively simple graphical, numerical, and mathematical considerations aimed at bridging these fields, highlighting the value of crossdating. Lack of temporal control prevents accurate identification of factors that drive wood formation, thus crossdating becomes crucial for any type of tree growth study at inter-annual and longer time scales. In particular, exactly dated tree rings, and their measurements, are crucial contributors to the testing and betterment of allometric relationships.  more » « less
Award ID(s):
1903561
PAR ID:
10159345
Author(s) / Creator(s):
Date Published:
Journal Name:
Forests
Volume:
11
Issue:
2
ISSN:
1999-4907
Page Range / eLocation ID:
146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Tree defense characteristics play a crucial role in modulating conifer bark beetle interactions, and there is a growing body of literature investigating factors mediating tree growth and resin-based defenses in conifers. A subset of studies have looked at relationships between tree growth, resin duct morphology and climate; however, these studies are almost exclusively from lower-elevation, moisture-limited systems. The relationship between resin ducts and climate in higher-elevation, energy-limited ecosystems is currently poorly understood. Methods In this study, we: (1) evaluated the relationship between biological trends in tree growth, resin duct anatomy, and climatic variability and (2) determined if tree growth and resin duct morphology of whitebark pine, a high-elevation conifer of management concern, is constrained by climate and/or regional drought conditions. Results We found that high-elevation whitebark pine trees growing in an energy-limited system experienced increased growth and defense under warmer and regionally drier conditions, with climate variables explaining a substantive proportion of variation (∼20–31%) in tree diameter growth and resin duct anatomy. Discussion Our results suggest that whitebark pine growth and defense was historically limited by short growing seasons in high-elevation environments; however, this relationship may change in the future with prolonged warming conditions. 
    more » « less
  2. null (Ed.)
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. 
    more » « less
  3. Abstract Midlatitude surface meteorological conditions are embedded within—and affected by—synoptic‐scale systems, including the movement and persistence of air masses (AMs). Changes in AM frequencies (number of daily occurrences) over the past several decades could have large effects on ecosystems: each organism is exposed to the synergistic effects of the entire suite of atmospheric variables acting upon it—an inherently multivariate environment—which is best captured using AMs. Utilizing a global‐scale AM classification system and a large network of tree‐ring chronologies, we investigate how variation in AM frequency impacts tree growth at over 900 locations. We find that AM frequencies are well‐correlated with tree growth, especially in the 12‐month period from July in the year prior to growth through June in the year of growth. The most impactful AMs are Dry‐Warm and Humid‐Cool AMs, which exhibit average correlations ofρ = −0.4 andρ = +0.4 with tree growth, respectively, for certain tree species, with correlations at some sites exceedingρ =  ±0.8 in some seasons. Compared to empirical models based solely on temperature and precipitation, modeling using only AM frequencies proved superior at nearly 60% of the sites and for over 80% of the well‐sampled (n ≥ 10) species. These results should provide a foundation for using AMs to improve forecasts of tree growth, tree stress and wildfire potential. Long‐term reconstructions of AM frequencies back several centuries may also be feasible using tree‐ring data, which will help contextualize and temporally extend multivariate perspectives of climate change that utilize such air masses. 
    more » « less
  4. Abstract The strength and persistence of the tropical carbon sink hinges on the long‐term responses of woody growth to climatic variations and increasing CO2. However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2‐hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual‐level woody growth responses to historical climate variability and increases in atmospheric CO2(Ca). When forced with historical Ca, ED2.2‐hydro reproduced the magnitude of increases in intercellular CO2concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Cabased on model‐data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi‐year mature‐forest CO2fertilization experiment. In addition, we found that ED2.2‐hydro generally overestimated climatic sensitivity of woody growth, especially for late‐successional plant functional types. The model‐data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree‐level growth sensitivity to Caand climate against tropical tree‐ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca. More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Carise predicted by biosphere models. 
    more » « less
  5. Abstract Forests play a crucial role providing ecosystem services to humans, yet many aspects of forest dynamics remain unknown. One key area is how climate change might impact reproduction of tree species. While most studies have focused on predicting tree growth, understanding how reproduction may change will be vital to forecasting future forest communities. Of particular interest is the relationship between annual growth and reproductive output, which has often been hypothesized as a trade‐off between allocating resources to growth or to reproduction. Two proposed pathways of this trade‐off, resource accumulation, that is, storage of resources over time, and resource allocation, that is, same year allocation of resources to reproduction, have been widely explored in relation to masting events. It has also been proposed that there is no internal trade‐off between the two functions, but rather there exists one or more climate variables that are intrinsically linked to both, that is, the weather hypothesis. In this study, we use 15 years of dendrochronological data and seed rain collections from forest stands at two latitudes to determine whether one or more of these strategies are taking place in two commonly occurring tree species: red maple,Acer rubrum; and sugar maple,Acer saccharum. We found evidence of a trade‐off in both species. We also found a combination of strategies was the norm, and there appeared to be evidence to also support the weather hypothesis. However, in both species, the strategy which dictated the trade‐off switched between the northern and southern regions, indicating a degree of plasticity that could be beneficial under changing environmental conditions. By identifying the ways in which growth and reproduction are connected and how these connections vary between different populations, we can gain insights into how trees allocate resources in response to changing conditions. 
    more » « less