Earth’s ancient grasslands and savannas—hereafter old-growth grasslands—have long been viewed by scientists and environmental policymakers as early successional plant communities of low conservation value. Challenging this view, emerging research suggests that old-growth grasslands support substantial biodiversity and are slow to recover if destroyed by human land uses (e.g., tillage agriculture, plantation forestry). But despite growing interest in grassland conservation, there has been no global test of whether old-growth grasslands support greater plant species diversity than secondary grasslands (i.e., herbaceous communities that assemble after destruction of old-growth grasslands). Our synthesis of 31 studies, including 92 timepoints on six continents, found that secondary grasslands supported 37% fewer plant species than old-growth grasslands (log response ratio = −0.46) and that secondary grasslands typically require at least a century, and more often millennia (projected mean 1,400 y), to recover their former richness. Young (<29 y) secondary grasslands were composed of weedy species, and even as their richness increased over decades to centuries, secondary grasslands were still missing characteristic old-growth grassland species (e.g., long-lived perennials). In light of these results, the view that all grasslands are weedy communities, trapped by fire and large herbivores in a state of arrested succession, is untenable. Moving forward, we suggest that ecologists should explicitly consider grassland assembly time and endogenous disturbance regimes in studies of plant community structure and function. We encourage environmental policymakers to prioritize old-growth grassland conservation and work to elevate the status of old-growth grasslands, alongside old-growth forests, in the public consciousness. 
                        more » 
                        « less   
                    
                            
                            Biodiversity recovery of Neotropical secondary forests
                        
                    
    
            Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1831952
- PAR ID:
- 10207116
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaau3114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages.more » « less
- 
            Abstract The consequences of land‐use change for savanna biodiversity remain undocumented in most regions of tropical Asia. One such region is western Maharashtra, India, where old‐growth savannas occupy a broad rainfall gradient and are increasingly rare due to agricultural conversion and afforestation.To understand the consequences of land‐use change, we sampled herbaceous plant communities of old‐growth savannas and three alternative land‐use types: tree plantations, tillage agriculture and agricultural fallows (n = 15 sites per type). Study sites spanned 457 to 1954 mm of mean annual precipitation—corresponding to the typical rainfall range of mesic savannas globally.Across the rainfall gradient, we found consistent declines in old‐growth savanna plant communities due to land‐use change. Local‐scale native species richness dropped from a mean of 12 species/m2in old‐growth savannas to 8, 6 and 3 species/m2in tree plantations, fallows and tillage agriculture, respectively. Cover of native plants declined from a mean of 49% in old‐growth savannas to 27% in both tree plantations and fallows, and 4% in tillage agriculture. Reduced native cover coincided with increased cover of invasive species in tree plantations (18%), fallows (18%) and tillage agriculture (3%).In analyses of community composition, tillage agriculture was most dissimilar to old‐growth savannas, while tree plantations and fallows showed intermediate dissimilarity. These compositional changes were driven partly by the loss of characteristic savanna species: 65 species recorded in old‐growth savannas were absent in other land uses. Indicator analysis revealed 21 old‐growth species, comprised mostly of native savanna specialists. Indicators of tree plantations (nine species) and fallows (13 species) were both invasive and native species, while the two indicators of tillage agriculture were invasive. As reflective of declines in savanna communities, mean native perennial graminoid cover of 27% in old‐growth savannas dropped to 9%, 7%, and 0.1% in tree plantations, fallows and tillage agriculture, respectively.Synthesis. Agricultural conversion and afforestation of old‐growth savannas in India destroys and degrades herbaceous plant communities that do not spontaneously recover on fallowed land. Efforts to conserve India's native biodiversity should encompass the country's widespread savanna biome and seek to limit conversion of irreplaceable old‐growth savannas.more » « less
- 
            Choosing effective methods to restore habitat for the diverse faunal assemblages of tropical forests is hampered by lack of long-term data comparing multiple restoration treatments. We conducted area counts of bird assemblages over 12 years (~5–17 years since restoration) in a blocked experiment with two active planted treatments (tree plantations and applied nucleation) and a passive restoration treatment (natural regeneration) replicated at 11 sites in Costa Rica. We also surveyed six pastures and five remnant forest sites to assess recovery of avian species richness, composition, forest specialists, and range-restricted species in restoration plots relative to degraded and reference systems. Restoration treatments showed increased resemblance of avian assemblages to remnant forest over time. Applied nucleation proved equally effective as plantation, despite a reduced planted area, whereas natural regeneration recovered more slowly. Assemblage-level trends in avian species richness and compositional similarity to reference forest are underpinned by reductions in use by pasture birds and by gradual increases in richness of forest-affiliated species. Because forest-affiliated species tend to have narrower distributions than the open-country species they replace, forest restoration can reduce biotic homogenization at the local scale. Restoration practitioners should consider applied nucleation as an alternative to standard plantations if seeking rapid recovery of bird assemblages. However, the ecological return on investment from natural regeneration increases over a couple of decades. Managers should monitor trends in forest-affiliated and rangerestricted species to track the recovery of the full avian assemblages, since coarse metrics like species richness and overall compositional similarity may plateau relatively quicklymore » « less
- 
            Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50-ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-yr intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 x 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    