skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective Instructional Strategies for Deeper Learning
Deep learning is the result of cognitive engagement with the learning materials. Various strategies have been proposed for promoting cognitive engagement during the learning process. One such strategy is active learning which is an essential element for student engagement to foster deeper learning leading to academic success. However, time limitation of the classroom is a major obstacle in implementing active learning. One solution is the use of the flipped teaching and learning methodology. This paper provides details of strategies to promote engagement and deeper learning in lower level math and aerospace engineering courses at a Historically Black College and University (HBCU). Data on students’ motivation and self-regulation was collected using the validated instrument, Motivated Strategies for Learning Questionnaire (MSLQ). Results of the analysis and best practices impacting students’ academic performance are shared in this paper. The work is supported by NSF Grant# 1712156.  more » « less
Award ID(s):
1712156
PAR ID:
10159389
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 ASEE Gulf-Southwest Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The role of cognitive engagement in promoting deep learning is well established. This deep learning fosters attributes of success such as self-efficacy, motivation and persistence. However, the traditional chalk-and-talk teaching and learning environment is not conducive to engage students cognitively. The biggest impediment to implementing an environment for deep learning such as active-learning is the limited duration of a typical class period most of which is consumed by lecturing. In this paper, best practices and strategies for cognitive engagement of students in the classroom are discussed. Several lower level math and aerospace engineering courses were redesigned and offered during the academic year at a historically black university. The learning strategies in these redesigned courses included the “flipped” pedagogical model which allowed the integration of the active-learning strategy in the classroom. The research study is to determine the impact of these redesigned courses on student academic performance and persistence in STEM courses. The efficacy of the design of the flipped approach was also investigated. A between-group quasi-experimental research design was used for comparing student academic performance in traditional classroom (control group) and redesigned classroom (intervention group). A within-subject, repeated measures design was also used to assess the impact on the students’ self-regulated learning. A validated instrument was used to measure the effect of the redesigned learning environment on the motivational beliefs and self-regulated learning. Data on the academic performance of the students were collected. Analyses of these data indicated a significant impact on student academic performance. A positive change in student motivation and self-regulated learning was observed. Data analysis also validated the design of the intervention. This research is supported by NSF Grant# 1712156. 
    more » « less
  2. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Open-ended learning environments (OELEs) have become an important tool for promoting constructivist STEM learning. OELEs are known to promote student engagement and facilitate a deeper understanding of STEM topics. Despite their benefits, OELEs present significant challenges to novice learners who may lack the self-regulated learning (SRL) processes they need to become effective learners and problem solvers. Recent studies have revealed the importance of the relationship between students' affective states, cognitive processes, and performance in OELEs. Yet, the relations between students' use of cognitive processes and their corresponding affective states have not been studied in detail. In this paper, we investigate the relations between studentsż˝f affective states and the coherence in their cognitive strategies as they work on developing causal models of scientific processes in the XYZ OELE. Our analyses and results demonstrate that there are significant differences in the coherence of cognitive strategies used by high- and low-performing students. As a result, there are also significant differences in the affective states of the high- and low-performing students that are related to the coherence of their cognitive activities. This research contributes valuable empirical evidence on studentsż˝f cognitive-affective dynamics in OELEs, emphasizing the subtle ways in which students' understanding of their cognitive processes impacts their emotional reactions in learning environments. 
    more » « less
  3. This paper will provide the first-year results of the impact of implementing the flipped approach in lower level math and aerospace engineering courses. A quasi-experimental between-groups research design was used for assessing the effectiveness of this methodology. The control group consisted of students who were in the same course but in sections with traditional teaching delivery while the intervention group consisted of students who were registered in the sections with the flipped approach. All students were from underrepresented groups. A positive impact on the students’ attitudes and learning strategies was observed as a result of the flipped classroom with active learning. Data pertaining to the effectiveness of the flipped classroom pedagogy is shared in this paper. Analysis of students’ cognitive engagement and their attitudes towards flipped classroom is discussed. The paper also includes best practices, their impact on student performance, and challenges in implementing a flipped classroom pedagogy. 
    more » « less
  4. Several studies have highlighted the positive effects that active learning may have on student engagement and performance. However, the influence of active learning strategies is mediated by several factors, including the nature of the learning environment and the cognitive level of in-class tasks. These factors can affect different dimensions of student engagement such as the nature of social processing in student groups, how knowledge is used and elaborated upon by students during in-class tasks, and the amount of student participation in group activities. In this study involving four universities in the US, we explored the association between these different dimensions of student engagement and the cognitive level of assigned tasks in five distinct general chemistry learning environments where students were engaged in group activities in diverse ways. Our analysis revealed a significant association between task level and student engagement. Retrieval tasks often led to a significantly higher number of instances of no interaction between students and individualistic work, and a lower number of knowledge construction and collaborative episodes with full student participation. Analysis tasks, on the other hand, were significantly linked to more instances of knowledge construction and collaboration with full group participation. Tasks at the comprehension level were distinctive in their association with more instances of knowledge application and multiple types of social processing. The results of our study suggest that other factors such as the nature of the curriculum, task timing, and class setting may also affect student engagement during group work. 
    more » « less
  5. null (Ed.)
    An authentic learning environment with the integration of technology can effectively engage students and improve their academic performance. Technology can support learning situations that relate to real life, and provide opportunities for inquiry and collaboration, fostering engagement. This paper will provide details of an authentic learning environment that utilizes flight simulation software to engage middle school students in the learning of several math and science concepts. Active learning lessons were developed using missions flown on the flight simulator. The pedagogical approach was implemented in a one-week long summer camp for students from rural counties with low socio-economic status. Data on student attitudes towards STEM was collected using a 65-item questionnaire. The performance on the content taught during the camp was also measured. The pre-post data analysis indicated positive impact of the approach. The results of this study will be included in this paper. This work is supported by NSF Grant# 1614249. 
    more » « less