skip to main content


Title: Investigating the Relations between Students' Affective States and the Coherence in their Activities in Open-Ended Learning Environments
Open-ended learning environments (OELEs) have become an important tool for promoting constructivist STEM learning. OELEs are known to promote student engagement and facilitate a deeper understanding of STEM topics. Despite their benefits, OELEs present significant challenges to novice learners who may lack the self-regulated learning (SRL) processes they need to become effective learners and problem solvers. Recent studies have revealed the importance of the relationship between students' affective states, cognitive processes, and performance in OELEs. Yet, the relations between students' use of cognitive processes and their corresponding affective states have not been studied in detail. In this paper, we investigate the relations between studentsż˝f affective states and the coherence in their cognitive strategies as they work on developing causal models of scientific processes in the XYZ OELE. Our analyses and results demonstrate that there are significant differences in the coherence of cognitive strategies used by high- and low-performing students. As a result, there are also significant differences in the affective states of the high- and low-performing students that are related to the coherence of their cognitive activities. This research contributes valuable empirical evidence on studentsż˝f cognitive-affective dynamics in OELEs, emphasizing the subtle ways in which students' understanding of their cognitive processes impacts their emotional reactions in learning environments.  more » « less
Award ID(s):
2112635
PAR ID:
10545269
Author(s) / Creator(s):
; ; ;
Editor(s):
Benjamin, Paaßen; Carrie, Demmans Epp
Publisher / Repository:
International Educational Data Mining Society
Date Published:
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Providing adaptive scaffolds to help learners develop effective self‐regulated learning (SRL) behaviours has been an important goal for intelligent learning environments. Adaptive scaffolding is especially important in open‐ended learning environments (OELE), where novice learners often face difficulties in completing their learning tasks.

    Objectives

    This paper presents a systematic framework for adaptive scaffolding in Betty's Brain, a learning‐by‐teaching OELE for middle school science, where students construct a causal model to teach a virtual agent, generically named Betty. We evaluate the adaptive scaffolding framework and discuss its implications on the development of more effective scaffolds for SRL in OELEs.

    Methods

    We detect key cognitive/metacognitiveinflection points, that is, moments where students' behaviours and performance change during learning, often suggesting an inability to apply effective learning strategies. At inflection points, Mr. Davis (a mentor agent in Betty's Brain) or Betty (the teachable agent) provides context‐specific conversational feedback, focusing on strategies to help the student become a more productive learner, or encouragement to support positive emotions. We conduct a classroom study with 98 middle schoolers to analyse the impact of adaptive scaffolds on students' learning behaviours and performance. We analyse how students with differential pre‐to‐post learning outcomes receive and use the scaffolds to support their subsequent learning process in Betty's Brain.

    Results and Conclusions

    Adaptive scaffolding produced mixed results, with some scaffolds (viz., strategic hints that supported debugging and assessment of causal models) being generally more useful to students than others (viz., encouragement prompts). Additionally, there were differences in how students with high versus low learning outcomes responded to some hints, as suggested by the differences in their learning behaviours and performance in the intervals after scaffolding. Overall, our findings suggest how adaptive scaffolding in OELEs like Betty's Brain can be further improved to better support SRL behaviours and narrow the learning outcomes gap between high and low performing students.

    Implications

    This paper contributes to our understanding and impact of adaptive scaffolding in OELEs. The results of our study indicate that successful scaffolding has to combine context‐sensitive inflection points with conversational feedback that is tailored to the students' current proficiency levels and needs. Also, our conceptual framework can be used to design adaptive scaffolds that help students develop and apply SRL behaviours in other computer‐based learning environments.

     
    more » « less
  2. In this study, we examined the relation between students’ affective and behavioral response to active learning, the influence of students’ belongingness and their self-efficacy on these responses, and the moderating influence of students’ gender-identity. We found that, despite mean differences in value, positivity, and distraction, there were not gender differences in the pattern of relations between variables. For both groups, belongingness and self-efficacy independently predicted students’ affective response and their evaluation of the class. Belongingness also predicted students’ participation in class. These findings suggest that student-level factors play an important role in how students respond to active learning and that fostering an atmosphere that supports both self-efficacy and belongingness may be beneficial for all students. 
    more » « less
  3. Learners' awareness of their own affective states (emotions) can improve their meta-cognition, which is a critical skill of being aware of and controlling one's cognitive, motivational, and affect, and adjusting their learning strategies and behaviors accordingly. To investigate the effect of peers' affects on learners' meta-cognition, we proposed two types of cues that aggregated peers' affects that were recognized via facial expression recognition:Locative cues (displaying the spikes of peers' emotions along a video timeline) andTemporal cues (showing the positivities of peers' emotions at different segments of a video). We conducted a between-subject experiment with 42 college students through the use of think-aloud protocols, interviews, and surveys. Our results showed that the two types of cues improved participants' meta-cognition differently. For example, interacting with theTemporal cues triggered the participants to compare their own affective responses with their peers and reflect more on why and how they had different emotions with the same video content. While the participants perceived the benefits of using AI-generated peers' cues to improve their awareness of their own learning affects, they also sought more explanations from their peers to understand the AI-generated results. Our findings not only provide novel design implications for promoting learners' meta-cognition with privacy-preserved social cues of peers' learning affects, but also suggest an expanded design framework for Explainable AI (XAI).

     
    more » « less
  4. Abstract

    Tracking students’ learning states to provide tailored learner support is a critical element of an adaptive learning system. This study explores how an automatic assessment is capable of tracking learners’ cognitive and emotional states during virtual reality (VR)‐based representational‐flexibility training. This VR‐based training program aims to promote the flexibility of adolescents with autism spectrum disorder (ASD) in interpreting, selecting and creating multimodal representations during STEM‐related design problem solving. For the automatic assessment, we used both natural language processing (NLP) and machine‐learning techniques to develop a multi‐label classification model. We then trained the model with the data from a total of audio‐ and video‐recorded 66 training sessions of four adolescents with ASD. To validate the model, we implemented both k‐fold cross‐validations and the manual evaluations by expert reviewers. The study finding suggests the feasibility of implementing the NLP and machine‐learning driven automatic assessment to track and assess the cognitive and emotional states of individuals with ASD during VR‐based flexibility training. The study finding also denotes the importance and viability of providing adaptive supports to maintain learners’ cognitive and affective engagement in a highly interactive digital learning environment.

     
    more » « less
  5. This full “research” paper presents an overview of results of a systematic literature review of students' affective responses to active learning in undergraduate STEM courses. We considered 2,364 abstracts of conference papers and journal articles published since 1990, and 412 studies met our inclusion criteria. The studies span the STEM disciplines and report various types of active learning. Their research designs include primarily quantitative methods (especially instructor-designed surveys and course evaluations), and they find that students’ affective responses are overwhelmingly positive. Few studies excelled on our quality score metric, and there few statistically significant differences by discipline (but biology studies and chemistry studies scored significantly higher in quality than electrical engineering studies). We include several possible directions for future work. 
    more » « less