skip to main content


Title: Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength
Traditionally, precipitates in a material are thought to serve as obstacles to dislocation glide and cause hardening of the material. This conventional wisdom, however, fails to explain recent discoveries of ultrahigh-strength and large-ductility materials with a high density of nanoscale precipitates, as obstacles to dislocation glide often lead to high stress concentration and even microcracks, a cause of progressive strain localization and the origin of the strength–ductility conflict. Here we reveal that nanoprecipitates provide a unique type of sustainable dislocation sources at sufficiently high stress, and that a dense dispersion of nanoprecipitates simultaneously serve as dislocation sources and obstacles, leading to a sustainable and self-hardening deformation mechanism for enhanced ductility and high strength. The condition to achieve sustainable dislocation nucleation from a nanoprecipitate is governed by the lattice mismatch between the precipitate and matrix, with stress comparable to the recently reported high strength in metals with large amount of nanoscale precipitates. It is also shown that the combination of Orowan’s precipitate hardening model and our critical condition for dislocation nucleation at a nanoprecipitate immediately provides a criterion to select precipitate size and spacing in material design. The findings reported here thus may help establish a foundation for strength–ductility optimization through densely dispersed nanoprecipitates in multiple-element alloy systems.  more » « less
Award ID(s):
1709318
PAR ID:
10159403
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
10
ISSN:
0027-8424
Page Range / eLocation ID:
5204 to 5209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Even though the fundamental rules governing dislocation activities have been well established in the past century, we report a phenomenon, dislocation transformation, governed by the generalized-stacking-fault energy surface mismatch (GSF mismatch for short) between two co-existing phases. By carrying out ab-initio-informed microscopic phase-field simulations, we demonstrate that the GSF mismatch between a high symmetry matrix phase and a low symmetry precipitate phase can transform an array of identical full dislocations in the matrix into an array of two different types of full dislocations when they shear through the precipitates. The precipitates serve as a passive Shockley partial source, creating new Shockley partial dislocations that are neither the ones from the dissociation of the full dislocation. This phenomenon enriches our fundamental understanding of partial dislocation nucleation and dislocation-precipitate interactions, offering additional opportunities to tailor work-hardening and twinning processes in alloys strengthened by low-symmetry precipitate phases.

     
    more » « less
  2. null (Ed.)
    Abstract

    Precipitation strengthening of alloys by the formation of secondary particles (precipitates) in the matrix is one of the techniques used for increasing the mechanical strength of metals. Understanding the precipitation kinetics such as nucleation, growth, and coarsening of these precipitates is critical for evaluating their hardening effects and improving the yield strength of the alloy during heat treatment. To optimize the heat treatment strategy and accelerate alloy design, predicting precipitate hardening effects via numerical methods is a promising complement to trial-and-error-based experiments and the physics-based phase-field method stands out with the significant potential to accurately predict the precipitate morphology and kinetics. In this study, we present a phase-field model that captures the nucleation, growth, and coarsening kinetics of precipitates during isothermal heat treatment conditions. Thermodynamic data, diffusion coefficients, and misfit strain data from experimental or lower length-scale calculations are used as input parameters for the phase-field model. Classical nucleation theory is implemented to capture the nucleation kinetics. As a case study, we apply the model to investigate γ″ precipitation kinetics in Inconel 625. The simulated mean particle length, aspect ratio, and volume fraction evolution are in agreement with experimental data for simulations at 600 °C and 650 °C during isothermal heat treatment. Utilizing the meso-scale results from the phase-field simulations as input parameters to a macro-scale coherency strengthening model, the evolution of the yield strength during heat treatment was predicted. In a broader context, we believe the current study can provide practical guidance for applying the phase-field approach as a link in the multiscale modeling of material properties.

     
    more » « less
  3. null (Ed.)
    Forming operations are known to be complex, involving many strain states, strain rates, temperatures, strain paths, and friction conditions. Material properties, such as strength and ductility, are large drivers in determining if a material can be formed into a specific part, and for selecting the equipment required for the forming operation. Predicting yielding behavior in situations such as these has been done using yield surfaces to describe material yielding in specific stress states. These models typically use initial mechanical properties, and will require correction if the material has experienced previous straining. Here, we performed interrupted uniaxial tensile testing of a 304 stainless steel to observe the effects of unloading and subsequent reloading on yielding and tensile properties. An increase in yield point developed, in which a higher yield was observed prior to returning to the bulk work hardening behavior, and the magnitude of the yield point varied with unloading conditions and strain imposed. The appearance of a yield point is attributed to strain aging or dislocation trapping at obstacles within the matrix. These results suggest that both strain aging and dislocation trapping mechanisms may be active in the matrix, which may present challenges when forming austenitic stainless and new advanced high strength steels that likely show a similar behavior. These results provide a potential area for refinement in the calculation of yielding criteria that are currently used to predict forming behavior. 
    more » « less
  4. null (Ed.)
    Abstract Lightweight, recyclable, and plentiful Mg alloys are receiving increased attention due to an exceptional combination of strength and ductility not possible from pure Mg. Yet, due to their alloying elements, such as rare-earths or aluminum, they are either not economical or biocompatible. Here we present a new rare-earth and aluminum-free magnesium-based alloy, with trace amounts of Zn, Ca, and Mn (≈ 2% by wt.). We show that the dilute alloy exhibits outstanding high strength and high ductility compared to other dilute Mg alloys. By direct comparison with annealed material of the same chemistry and using transmission electron microscopy (TEM), high-resolution TEM (HR-TEM) and atom probe tomography analyses, we show that the high strength can be attributed to a number of very fine, Zn/Ca-containing nanoscale precipitates, along with ultra-fine grains. These findings show that forming a hierarchy of nanometer precipitates from just miniscule amounts of solute can invoke simultaneous high strength and ductility, producing an affordable, biocompatible Mg alloy. 
    more » « less
  5. Abstract Refractory multi-principal element alloys (RMPEAs) are promising materials for high-temperature structural applications. Here, we investigate the role of short-range ordering (SRO) on dislocation glide in the MoNbTi and TaNbTi RMPEAs using a multi-scale modeling approach. Monte carlo/molecular dynamics simulations with a moment tensor potential show that MoNbTi exhibits a much greater degree of SRO than TaNbTi and the local composition has a direct effect on the unstable stacking fault energies (USFEs). From mesoscale phase-field dislocation dynamics simulations, we find that increasing SRO leads to higher mean USFEs and stress required for dislocation glide. The gliding dislocations experience significant hardening due to pinning and depinning caused by random compositional fluctuations, with higher SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally, we show how the morphology of an expanding dislocation loop is affected by the applied stress. 
    more » « less