skip to main content

Title: Extremum Seeking Control for Stiffness Auto-Tuning of a Quasi-Passive Ankle Exoskeleton
Recently, it has been shown that light-weight, passive, ankle exoskeletons with spring-based energy store-and-release mechanisms can reduce the muscular effort of human walking. The stiffness of the spring in such a device must be properly tuned in order to minimize the muscular effort. However, this muscular effort changes for different locomotion conditions (e.g., walking speed), causing the optimal spring stiffness to vary as well. Existing passive exoskeletons have a fixed stiffness during operation, preventing it from responding to changes in walking conditions. Thus, there is a need of a device and auto-tuning algorithm that minimizes the muscular effort across different walking conditions, while preserving the advantages of passive exoskeletons. In this letter, we developed a quasi-passive ankle exoskeleton with a variable stiffness mechanism capable of self-tuning. As the relationship between the muscular effort and the optimal spring stiffness across different walking speeds is not known a priori, a model-free, discrete-time extremum seeking control (ESC) algorithm was implemented for real-time optimization of spring stiffness. Experiments with an able-bodied subject demonstrate that as the walking speed of the user changes, ESC automatically tunes the torsional stiffness about the ankle joint. The average RMS EMG readings of tibialis anterior and soleus muscles at more » slow walking speed decreased by 26.48% and 7.42%, respectively. « less
; ; ; ;
Award ID(s):
1728057 1830360 1953908
Publication Date:
Journal Name:
IEEE Robotics and Automation Letters
Page Range or eLocation-ID:
4604 - 4611
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes an extremum seeking controller (ESC) for simultaneously tuning the feedback control gains of a knee-ankle powered prosthetic leg using continuous-phase controllers. Previously, the proportional gains of the continuous-phase controller for each joint were tuned manually by trial-and-error, which required several iterations to achieve a balance between the prosthetic leg tracking error performance and the user's comfort. In this paper, a convex objective function is developed, which incorporates these two goals. We present a theoretical analysis demonstrating that the quasi-steady-state value of the objective function is independent of the controller damping gains. Furthermore, we prove the stability of error dynamics of continuous-phase controlled powered prosthetic leg along with ESC dynamics using averaging and singular perturbation tools. The developed cost function is then minimized by ESC in real-time to simultaneously tune the proportional gains of the knee and ankle joints. The optimum of the objective function shifts at different walking speeds, and our algorithm is suitably fast to track these changes, providing real-time adaptation for different walking conditions. Benchtop and walking experiments verify the effectiveness of the proposed ESC across various walking speeds.
  2. Powered ankle exoskeletons that apply assistive torques with optimized timing and magnitude can reduce metabolic cost by ∼10% compared to normal walking. However, finding individualized optimal control parameters is time consuming and must be done independently for different walking modes (e.g., speeds, slopes). Thus, there is a need for exoskeleton controllers that are capable of continuously adapting torque assistance in concert with changing locomotor demands. One option is to use a biologically inspired, model-based control scheme that can capture the adaptive behavior of the human plantarflexors during natural gait. Here, based on previously demonstrated success in a powered ankle-foot prosthesis, we developed an ankle exoskeleton controller that uses a neuromuscular model (NMM) comprised of a Hill type musculotendon driven by a simple positive force feedback reflex loop. To examine the effects of NMM reflex parameter settings on (i) ankle exoskeleton mechanical performance and (ii) users’ physiological response, we recruited nine healthy, young adults to walk on a treadmill at a fixed speed of 1.25 m/s while donning bilateral tethered robotic ankle exoskeletons. To quantify exoskeleton mechanics, we measured exoskeleton torque and power output across a range of NMM controller Gain (0.8–2.0) and Delay (10–40 ms) settings, as well as amore »High Gain/High Delay (2.0/40 ms) combination. To quantify users’ physiological response, we compared joint kinematics and kinetics, ankle muscle electromyography and metabolic rate between powered and unpowered/zero-torque conditions. Increasing NMM controller reflex Gain caused increases in average ankle exoskeleton torque and net power output, while increasing NMM controller reflex Delay caused a decrease in net ankle exoskeleton power output. Despite systematic reduction in users’ average biological ankle moment with exoskeleton mechanical assistance, we found no NMM controller Gain or Delay settings that yielded changes in metabolic rate. Post hoc analyses revealed weak association at best between exoskeleton and biological mechanics and changes in users’ metabolic rate. Instead, changes in users’ summed ankle joint muscle activity with powered assistance correlated with changes in their metabolic energy use, highlighting the potential to utilize muscle electromyography as a target for on-line optimization in next generation adaptive exoskeleton controllers.« less
  3. ABSTRACT An ideal prosthesis should perform as well as or better than the missing limb it was designed to replace. Although this ideal is currently unattainable, recent advances in design have significantly improved the function of prosthetic devices. For the lower extremity, both passive prostheses (which provide no added power) and active prostheses (which add propulsive power) aim to emulate the dynamic function of the ankle joint, whose adaptive, time-varying resistance to applied forces is essential for walking and running. Passive prostheses fail to normalize energetics because they lack variable ankle impedance that is actively controlled within each gait cycle. By contrast, robotic prostheses can normalize energetics for some users under some conditions. However, the problem of adaptive and versatile control remains a significant issue. Current prosthesis-control algorithms fail to adapt to changes in gait required for walking on level ground at different speeds or on ramps and stairs. A new paradigm of ‘muscle as a tunable material’ versus ‘muscle as a motor’ offers insights into the adaptability and versatility of biological muscles, which may provide inspiration for prosthesis design and control. In this new paradigm, neural activation tunes muscle stiffness and damping, adapting the response to applied forces rathermore »than instructing the timing and amplitude of muscle force. A mechanistic understanding of muscle function is incomplete and would benefit from collaboration between biologists and engineers. An improved understanding of the adaptability of muscle may yield better models as well as inspiration for developing prostheses that equal or surpass the functional capabilities of biological limbs across a wide range of conditions.« less
  4. Task-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-invariant assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines. However, this approach did not have the flexibility to reproduce joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict assumptions related to input-output passivity, which ensures the human remains in control of energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary activities of daily life, this paper generalizes this energy shaping framework by incorporating vertical ground reaction forces and global planar orientation into the basis set, while preserving passivity between the human joint torques and human joint velocities. Wemore »present an experimental implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the versatility of this control approach and its effect on muscular effort.« less
  5. This study assessed the metabolic energy consumption of walking with the external components of a “Muscle-First” Motor Assisted Hybrid Neuroprosthesis (MAHNP), which combines implanted neuromuscular stimulation with a motorized exoskeleton. The “Muscle-First” approach prioritizes generating motion with the wearer's own muscles via electrical stimulation with the actuators assisting on an as-needed basis. The motorized exoskeleton contributes passive resistance torques at both the hip and knee joints of 6Nm and constrains motions to the sagittal plane. For the muscle contractions elicited by neural stimulation to be most effective, the motorized joints need to move freely when not actively assisting the desired motion. This study isolated the effect of the passive resistance or “friction” added at the joints by the assistive motors and transmissions on the metabolic energy consumption of walking in the device. Oxygen consumption was measured on six able-bodied subjects performing 6 min walk tests at three different speeds (0.4, 0.8, and 1.2 m/s) under two different conditions: one with the motors producing no torque to compensate for friction, and the other having the motors injecting power to overcome passive friction based on a feedforward friction model. Average oxygen consumption in the uncompensated condition across all speeds, measured in Metabolicmore »Equivalent of Task (METs), was statistically different than the friction compensated condition. There was an average decrease of 8.8% for METs and 1.9% for heart rate across all speeds. While oxygen consumption was reduced when the brace performed friction compensation, other factors may have a greater contribution to the metabolic energy consumption when using the device. Future studies will assess the effects of gravity compensation on the muscular effort required to lift the weight of the distal segments of the exoskeleton as well as the sagittal plane constraint on walking motions in individuals with spinal cord injuries (SCI).« less