skip to main content


Search for: All records

Award ID contains: 1830360

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant with respect to the viscous losses, our optimal PEA designs outperform SEA designs by further reducing the motor energy consumption up to 63%. Comparing to the linear PEA designs, our nonlinear PEA designs further reduced the motor energy consumption up to 31%. From our convex formulation, our global optimal nonlinear parallel elastic actuator designs give two different elongation-torque curves for positive and negative elongation, suggesting a clutching mechanism for the final implementation. In addition, the different torque-elongation profiles for positive and negative elongation for nonlinear parallel elastic actuators can cause sensitivity of the energy consumption to changes in the nominal load trajectory. 
    more » « less
  2. Natural dynamics, nonlinear optimization, and, more recently, convex optimization are available methods for stiffness design of energy-efficient series elastic actuators. Natural dynamics and general nonlinear optimization only work for a limited set of load kinetics and kinematics, cannot guarantee convergence to a global optimum, or depend on initial conditions to the numerical solver. Convex programs alleviate these limitations and allow a global solution in polynomial time, which is useful when the space of optimization variables grows (e.g., when designing optimal nonlinear springs or co-designing spring, controller, and reference trajectories). Our previous work introduced the stiffness design of series elastic actuators via convex optimization when the transmission dynamics are negligible, which is an assumption that applies mostly in theory or when the actuator uses a direct or quasi-direct drive. In this work, we extend our analysis to include friction at the transmission. Coulomb friction at the transmission results in a non-convex expression for the energy dissipated as heat, but we illustrate a convex approximation for stiffness design. We experimentally validated our framework using a series elastic actuator with specifications similar to the knee joint of the Open Source Leg, an open-source robotic knee-ankle prosthesis. 
    more » « less
  3. null (Ed.)
    Foot drop is the inability to dorsiflex the ankle (raise the toes) due to neuromuscular impairment, and this common condition can cause trips and falls. Current treatments for chronic foot drop provide dorsiflexion support, but they either impede ankle push off or are not suitable for all patients. Powered ankle-foot orthosis (AFO) can counteract foot drop without these drawbacks, but they are heavy and bulky and have short battery life. To counteract foot drop without the drawbacks of current treatments or powered AFO, we designed and built an AFO powered by dielectric elastomer actuators (DEAs), a type of artificial muscle technology. This paper presents our design and the results of benchtop testing. We found that the DEA AFO can provide 49 % of the dorsiflexion support necessary to raise the foot. Further, charging the DEAs reduced the effort that would be required for plantarflexion compared to that with passive DEA behavior, and this operation could be powered for 7000 steps or more in actual operation. DEAs are a promising approach for building an AFO that counteracts foot drop without impeding plantarflexion, and they may prove useful for other powered prosthesis and orthosis designs. 
    more » « less
  4. Recently, it has been shown that light-weight, passive, ankle exoskeletons with spring-based energy store-and-release mechanisms can reduce the muscular effort of human walking. The stiffness of the spring in such a device must be properly tuned in order to minimize the muscular effort. However, this muscular effort changes for different locomotion conditions (e.g., walking speed), causing the optimal spring stiffness to vary as well. Existing passive exoskeletons have a fixed stiffness during operation, preventing it from responding to changes in walking conditions. Thus, there is a need of a device and auto-tuning algorithm that minimizes the muscular effort across different walking conditions, while preserving the advantages of passive exoskeletons. In this letter, we developed a quasi-passive ankle exoskeleton with a variable stiffness mechanism capable of self-tuning. As the relationship between the muscular effort and the optimal spring stiffness across different walking speeds is not known a priori, a model-free, discrete-time extremum seeking control (ESC) algorithm was implemented for real-time optimization of spring stiffness. Experiments with an able-bodied subject demonstrate that as the walking speed of the user changes, ESC automatically tunes the torsional stiffness about the ankle joint. The average RMS EMG readings of tibialis anterior and soleus muscles at slow walking speed decreased by 26.48% and 7.42%, respectively. 
    more » « less
  5. Design of rehabilitation and physical assistance robots that work safely and efficiently despite uncertain operational conditions remains an important challenge. Current methods for the design of energy efficient series elastic actuators use an optimization formulation that typically assumes known operational requirements. This approach could lead to actuators that cannot satisfy elongation, speed, or torque requirements when the operation deviates from nominal conditions. Addressing this gap, we propose a convex optimization formulation to design the stiffness of series elastic actuators to minimize energy consumption and satisfy actuator constraints despite uncertainty due to manufacturing of the spring, unmodeled dynamics, efficiency of the transmission, and the kinematics and kinetics of the load. To achieve convexity, we write energy consumption as a scalar convex-quadratic function of compliance. As actuator constraints, we consider peak motor torque, peak motor velocity, limitations due to the speed-torque relationship of DC motors, and peak elongation of the spring. We apply our formulation to the robust design of a series elastic actuator for a powered prosthetic ankle. Our simulation results indicate that a small trade-off between energy efficiency and robustness is justified to design actuators that can operate with uncertainty. 
    more » « less
  6. Legged and gait-assistance robots can walk more efficiently if their actuators are compliant. The adjustable compliance of variable-stiffness actuators (VSAs) can enhance this benefit. However, this functionality requires additional mechanical components making VSAs impractical for some uses due to increased weight, volume, and cost. VSAs would be more practical if they could modulate the stiffness of their springs without additional components, which usually include moving parts and an additional motor. Therefore, we designed a VSA that uses dielectric elastomer transducers (DETs) for springs. It does not need mechanical stiffness-adjusting components because DETs soften due to electrostatic forces. This paper presents details and performance of our design. Our DET VSA demonstrated independent modulation of its equilibrium position and stiffness. Our design approach could make it practical to obtain the benefits of variable-stiffness actuation with less weight, volume, and cost than normally accompanies them, once weaknesses of DET technology are addressed. 
    more » « less
  7. Compared to rigid actuators, Series Elastic Actuators (SEAs) offer a potential reduction of motor energy consumption and peak power, though these benefits are highly dependent on the design of the torque-elongation profile of the elastic element. In the case of linear springs, natural dynamics is a traditional method for this design, but it has two major limitations: arbitrary load trajectories are difficult or impossible to analyze and it does not consider actuator constraints. Parametric optimization is also a popular design method that addresses these limitations, but solutions are only optimal within the space of the parameters. To overcome these limitations, we propose a non-parametric convex optimization program for the design of the nonlinear elastic element that minimizes energy consumption and peak power for an arbitrary periodic reference trajectory. To obtain convexity, we introduce a convex approximation to the expression of peak power; energy consumption is shown to be convex without approximation. The combination of peak power and energy consumption in the cost function leads to a multiobjective convex optimization framework that comprises the main contribution of this paper. As a case study, we recover the elongation-torque profile of a cubic spring, given its natural oscillation as the reference load. We then design nonlinear SEAs for an ankle prosthesis that minimize energy consumption and peak power for different trajectories and extend the range of achievable tasks when subject to actuator constraints. 
    more » « less