skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Laser cooling of antihydrogen atoms
Abstract The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision 1 . Slowing the translational motion of atoms and ions by application of such a force 2,3 , known as laser cooling, was first demonstrated 40 years ago 4,5 . It revolutionized atomic physics over the following decades 6–8 , and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen 9 , the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation 10,11 , we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic 11–13 and gravitational 14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.  more » « less
Award ID(s):
1806380 1806305
NSF-PAR ID:
10233690
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature
Volume:
592
Issue:
7852
ISSN:
0028-0836
Page Range / eLocation ID:
35 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S1/2 and 2P1/2 states1. The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics2–5. Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S–2P Lyman-α transitions in antihydrogen6, we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P1/2–2P3/2) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S–2S transition frequency6,7, we find that the classic Lamb shift in antihydrogen (2S1/2–2P1/2 splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge– parity–time symmetry8 and towards the determination of other fundamental quantities, such as the antiproton charge radius9,10, in this antimatter system. 
    more » « less
  2. Abstract

    Sawtooth Wave Adiabatic Passage (SWAP) laser cooling was recently demonstrated using a narrow-linewidth single-photon optical transition in atomic strontium and may prove useful for cooling other atoms and molecules. However, many atoms and molecules lack the appropriate narrow optical transition. Here we use such an atom,87Rb, to demonstrate that two-photon Raman transitions with arbitrarily-tunable linewidths can be used to achieve 1D SWAP cooling without significantly populating the intermediate excited state. Unlike SWAP cooling on a narrow transition, Raman SWAP cooling allows for a final 1D temperature well below the Doppler cooling limit (here, 25 times lower); and the effective excited state decay rate can be modified in time, presenting another degree of freedom during the cooling process. We also develop a generic model for Raman Landau–Zener transitions in the presence of small residual free-space scattering for future applications of SWAP cooling in other atoms or molecules.

     
    more » « less
  3. Abstract

    We report a measurement of the hyperfine-structure constants of the85Rb 4D3/2state using two-photon optical spectroscopy of the 5S1/24D3/2transition. The spectra are acquired by measuring the transmission of the low-power 795 nm lower-stage laser beam through a cold-atom sample as a function of laser frequency, with the frequency of the upper-stage, 1476 nm laser fixed. All 4 hyperfine components of the4D3/2state are well-resolved in the experimental data. The dominant systematic is the light shift from the 1476 nm laser, which is addressed by extrapolating line positions measured for a set of 1476 nm laser powers to zero laser power. The analysis of our experimental data yields both the magnetic-dipole and electric-quadrupole constants for the85Rb 4D3/2level, without using earlier hyperfine measurements of other atomic levels. The respective results,A=7.419(35) MHz andB=4.19(19) MHz, are discussed in context with previous works. Our investigation may be useful for optical atomic clocks for precision metrology and emerging atom-based quantum technologies, all-infrared excitation of Rb Rydberg levels, and molecular physics.

     
    more » « less
  4. Abstract

    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.

     
    more » « less
  5. Over the past few decades, rapid development of laser cooling techniques and narrow-linewidth lasers have allowed atom-based quantum clocks to achieve unprecedented precision. Techniques originally developed for atomic clocks can be extended to ultracold molecules, with applications ranging from quantum-state-controlled ultracold chemistry to searches for new physics. Because of the richness of molecular structure, quantum metrology based on molecules provides possibilities for testing physics that is beyond the scope of traditional atomic clocks. This thesis presents the work performed to establish a state-of-the-art quantum clock based on ultracold molecules. The molecular clock is based on a frequency difference between two vibrational levels in the electronic ground state of 88Sr2 diatomic molecules. Such a clock allows us test molecular QED, improve constraints on nanometer-scale gravity, and potentially provide a model-independent test of temporal variations of the proton-electron mass ratio. Trap-insensitive spectroscopy is crucial for extending coherent molecule-light interactions and achieving a high quality factor Q. We have demonstrated a magic wavelength technique for molecules by manipulating the optical lattice frequency near narrow polarizability resonances. This general technique allows us to increase the coherence time to tens of ms, an improvement of a factor of several thousand, and to narrow the linewidth of a 25 THz vibrational transition initially to 30 Hz. This width corresponds to the quality factor Q = 8 × 10^11. Besides the molecular quantum metrology, investigations of novel phenomena in state-selected photodissociation are also described in this thesis, including magnetic-field control of photodissociation and observation of the crossover from ultracold to quasiclassical chemistry. 
    more » « less