skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal imaging and heat islands: cross-discipline learning in optics and meteorology
There are many interesting ways in which optics and meteorology intersect and provide cross-discipline learning opportunities. One example is the use of thermal imaging to illustrate the principles underlying urban heat islands (UHIs), found on scales from the mesoscale to the microscale, which give rise to increased temperatures in urban settings. The most common way of documenting such phenomena is through traditional meteorological measurements. This presentation describes the use of a thermal infrared imager to document and help explain micro-scale UHIs observed initially as a persistent difference in air temperature measured by two nearly identical weather stations separated by 2.79 km in Bozeman, Montana. Mobile meteorological measurements from a backpack-mounted weather station, carried throughout the surrounding area at different times of year and compared with the stationary campus weather station, verified the presence and scale of a micro-heat island. This also identified one such micro UHI that existed when the immediate surroundings contained man-made materials such as concrete and asphalt adjacent to natural vegetation. Thermal images from the radiometrically calibrated imager recorded the diurnal thermal signature of manmade and natural surfaces. The thermal images help to explain process that are occurring, whereas most traditional meteorological instrumentation may not provide process-based information. Time-series plots of the infrared brightness temperatures show that the man-made materials emit elevated levels of thermal radiation long after the end of direct solar heating, while natural vegetation quickly comes into thermal equilibrium with the ambient air. The combination of traditional and nontraditional instrumentation document and explain processes occurring in micro UHIs that vary rapidly in space with changing ground cover.  more » « less
Award ID(s):
1757351
PAR ID:
10159554
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. SPIE 11143
Volume:
111433V
Page Range / eLocation ID:
160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this study, we simulate the magnitude of urban heat islands (UHIs) during heat wave (HWs) in two cities with contrasting climates (Boston, Massachusetts, and Phoenix, Arizona) using the Weather Research and Forecasting (WRF) Model and quantify their drivers with a newly developed attribution method. During the daytime, a surface UHI (SUHI) is found in Boston, which is mainly caused by the higher urban surface resistance that reduces the latent heat flux and the higher urban aerodynamic resistance r a that inhibits convective heat transfer between the urban surface and the lower atmosphere. In contrast, a daytime surface urban cool island is found in Phoenix, which is mainly due to the lower urban r a that facilitates convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no daytime AUHI in either city. At night, an SUHI and an AUHI are identified in Boston that are due to the stronger release of heat storage in urban areas. In comparison, the lower urban r a in Phoenix enhances convective heat transfer from the atmosphere to the urban surface at night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of UHIs or urban cool islands is strongly controlled by urban–rural differences in terms of aerodynamic features, vegetation and moisture conditions, and heat storage, which show contrasting characteristics in different regions. 
    more » « less
  2. Extreme heat puts tremendous stress on human health and limits people’s ability to work, travel, and socialize outdoors. To mitigate heat in public spaces, thermal conditions must be assessed in the context of human exposure and space use. Mean Radiant Temperature (MRT) is an integrated radiation metric that quantifies the total heat load on the human body and is a driving parameter in many thermal comfort indices. Current sensor systems to measure MRT are expensive and bulky (6-directional setup) or slow and inaccurate (globe thermometers) and do not sense space use. This engineering systems paper introduces the hardware and software setup of a novel, low-cost thermal and visual sensing device (MaRTiny). The system collects meteorological data, concurrently counts the number of people in the shade and sun, and streams the results to an Amazon Web Services (AWS) server. MaRTiny integrates various micro-controllers to collect weather data relevant to human thermal exposure: air temperature, humidity, wind speed, globe temperature, and UV radiation. To detect people in the shade and Sun, we implemented state of the art object detection and shade detection models on an NVIDIA Jetson Nano. The system was tested in the field, showing that meteorological observations compared reasonably well to MaRTy observations (high-end human-biometeorological station) when both sensor systems were fully sun-exposed. To overcome potential sensing errors due to different exposure levels, we estimated MRT from MaRTiny weather observations using machine learning (SVM), which improved RMSE. This paper focuses on the development of the MaRTiny system and lays the foundation for fundamental research in urban climate science to investigate how people use public spaces under extreme heat to inform active shade management and urban design in cities. 
    more » « less
  3. Abstract Urban heat islands (UHIs) may increase the likelihood that frost sensitive plants will escape freezing nighttime temperatures in late spring and early fall. Using data from 151 temperature sensors in the Madison, Wisconsin, region during March 2012–October 2016, we found that during time periods when the National Weather Service (NWS) issued freeze warnings (threshold of 0.0°C) or frost advisories (threshold of 2.22°C) were valid, temperatures in Madison’s most densely populated, built-up areas often did not fall below the respective temperature thresholds. Urban locations had a mean minimum temperature of 0.72° and 1.39°C for spring and fall freeze warnings, respectively, compared to −0.52° and −0.53°C for rural locations. On average, 31% of the region’s land area experienced minimum temperatures above the respective temperature thresholds during freeze warnings and frost advisories, and the likelihood of temperatures falling below critical temperature thresholds increased as the distance away from core urban centers increased. The urban–rural temperature differences were greatest in fall compared to spring, and when sensor temperatures did drop below thresholds, the maximum time spent at or below thresholds was highest for rural locations during fall freeze warnings (6.2 h) compared to urban locations (4.8 h). These findings potentially have widely varying implications for the general public and industry. UHIs create localized, positive perturbations to nighttime temperatures that are difficult to account for in forecasts; therefore, freeze warnings and frost advisories may have varying degrees of verification in medium-sized cities like Madison, Wisconsin, that are surrounded by cropland and natural vegetation. Significance StatementThe purpose of this study was to understand whether the urban heat island effect in Madison, Wisconsin, creates localized temperature patterns where county-scale frost advisories and freeze warnings may not verify. Approximately one-third of Madison’s urban core area and most densely populated region experienced temperatures that were consistently above critical low temperature thresholds. This is important because gardening and crop management decisions are responsive to the perceived risk of cold temperatures in spring and fall that can damage or kill plants. These results suggest that urban warming presents forecast challenges to the issuance of frost advisories and freeze warnings, supporting the need for improved numerical weather prediction at higher spatial resolution to account for complex urban meteorology. 
    more » « less
  4. Abstract Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10–20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño–Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies. 
    more » « less
  5. The atmospheric boundary layer along the coastal-urban transect differs from that of urban or rural regions due to the distinctive interaction between the sea breeze and the urban heat island effect. In this manuscript, we present the observations of the atmospheric boundary layer in the Houston, Texas, area during the Coastal Urban Boundary Layer Experiment (CUBE) from June through September 2022. In order to understand the unique characteristics of the coastal urban boundary layer, we collected mean and turbulence data from micrometeorological towers and ground-based remote sensing instruments installed in the urban, coastal, bay, and rural sections within the greater Houston region. Furthermore, an urbanized weather research and forecast (WRF) model incorporating the Building Effect Parameterization and Building Energy Model (BEP-BEM) scheme is used to recognize the spatial variability of the meteorological conditions in the Houston Metro area. Compared to non-urban sites, the urban site exhibits a higher near-surface temperature throughout the day, with the highest temperature difference occurring at night due to the redistribution of the stored heat as sensible heat. During the dry period in June, we observed comparatively higher sensible heat flux in the urban site, demonstrating the heat island effect and lower latent heat flux due to lack of vegetation. The urban site had higher TKE values throughout the day than other sites because of the uneven roughness of the landscape. One of the unique findings of this study is the shift in spectral characteristics along the coastal-rural-urban transect. The power and co-spectra of zonal and vertical velocities and the vertical heat flux during the convective periods varied significantly across all the sites. The coastal site was influenced mainly by the local bay breeze shifting the peak to higher frequencies. The boundary layer height in the urban site was generally greater than in bay and rural sites due to increased convection in urban areas resulting from anthropogenic modification of land cover and waste heat from air conditioning use. The balance between the urban thermal and mechanical roughness effects was seen during the sea breeze front (SBF) event on the highest heat index day as SBF was triggered and accelerated by UHI. 
    more » « less