skip to main content

Title: The 100 pc White Dwarf Sample in the SDSS Footprint
We present follow-up spectroscopy of 711 white dwarfs within 100 pc, and present a detailed model atmosphere analysis of the 100 pc white dwarf sample in the SDSS footprint. Our spectroscopic follow-up is complete for 83% of the white dwarfs hotter than 6000 K, where the atmospheric composition can be constrained reliably. We identify 1508 DA white dwarfs with pure hydrogen atmospheres. The DA mass distribution has an extremely narrow peak at $0.59~M_{\odot}$, and reveals a shoulder from relatively massive white dwarfs with $M=0.7$-$0.9~M_{\odot}$. Comparing this distribution with binary population synthesis models, we find that the contribution from single stars that form through mergers cannot explain the over-abundance of massive white dwarfs. In addition, the mass distribution of cool DAs shows a near absence of $M>1~M_{\odot}$ white dwarfs. The pile-up of 0.7-$0.9~M_{\odot}$ and the disappearance of $M>1~M_{\odot}$ white dwarfs is consistent with the effects of core crystallization. Even though the evolutionary models predict the location of the pile-up correctly, the delay from the latent heat of crystallization by itself is insufficient to create a significant pile-up, and additional cooling delays from related effects like phase separation are necessary. We also discuss the population of infrared-faint (ultracool) white dwarfs, and demonstrate more » for the first time the existence of a well defined sequence in color and magnitude. Curiously, this sequence is connected to a region in the color-magnitude diagrams where the number of helium-dominated atmosphere white dwarfs is low. This suggests that the infrared-faint white dwarfs likely have mixed H/He atmospheres. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical journal
Sponsoring Org:
National Science Foundation
More Like this
  1. A recent analysis of the 100 pc white dwarf sample in the SDSS footprint demonstrated for the first time the existence of a well defined ultracool -- or IR-faint -- white dwarf sequence in the Hertzsprung-Russell diagram. Here we take advantage of this discovery to enlarge the IR-faint white dwarf sample threefold. We expand our selection to the entire Pan-STARRS survey footprint as well as the Montreal White Dwarf Database 100 pc sample, and identify 37 candidates with strong flux deficits in the optical. We present follow-up Gemini optical spectroscopy of 30 of these systems, and confirm all of them as IR-faint white dwarfs. We identify an additional set of 33 objects as candidates based on their colors and magnitudes. We present a detailed model atmosphere analysis of all 70 newly identified IR-faint white dwarfs together with 35 previously known objects reported in the literature. We discuss the physics of model atmospheres and show that the key physical ingredient missing in our previous generation of model atmospheres was the high-density correction to the He-minus free-free absorption coefficient. With new model atmospheres calculated for the purpose of this analysis, we now obtain significantly higher effective temperatures and larger stellar masses formore »these IR-faint white dwarfs than the Teff and M values reported in previous analyses, thus solving a two decade old problem. In particular, we identify in our sample a group of ultramassive white dwarfs in the Debye cooling phase with stellar parameters never measured before.« less
  2. ABSTRACT We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $1.3\, {\rm M}_{\odot }$ if they had pure H atmospheres and CO cores, including two outliers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to M = 1.334 M⊙, which corresponds to the high-density limit of our equation-of-state tables, ρ = 109 g cm−3. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.

    We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$), run to z = 0 with $30\, \mathrm{M}_{\odot }$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core ${\gt}200\rm \, pc$, while lower mass UFDs exhibit cusps down to ${\lesssim}100\rm \, pc$, as expected from energetic arguments. Our dwarfs with $M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations).more »The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).

    « less

    We introduce a new set of zoom-in cosmological simulations with sub-pc resolution, intended to model extremely faint, highly magnified star-forming stellar clumps, detected at z = 6.14 thanks to gravitational lensing. The simulations include feedback from individual massive stars (in both the pre-supernova and supernova phases), generated via stochastic, direct sampling of the stellar initial mass function. We adopt a modified ‘delayed cooling’ feedback scheme, specifically created to prevent artificial radiative loss of the energy injected by individual stars in very dense gas (n ∼ 103–105 cm−3). The sites where star formation ignites are characterized by maximum densities of the order of 105 cm−3 and gravitational pressures Pgrav/k >107 K cm−3, corresponding to the values of the local, turbulent regions where the densest stellar aggregates form. The total stellar mass at z = 6.14 is 3.4$\times 10^7~\rm M_{\odot }$, in satisfactory agreement with the observed stellar mass of the observed systems. The most massive clumps have masses of $\sim 10^6~\rm M_{\odot }$ and half-mass sizes of ∼100 pc. These sizes are larger than the observed ones, including also other samples of lensed high-redshift clumps, and imply an average density one orders of magnitude lower than the observed one. In the size–mass plane, ourmore »clumps populate a sequence that is intermediate between the ones of observed high-redshift clumps and local dSph galaxies.

    « less

    The progenitor systems and explosion mechanism of Type Ia supernovae are still unknown. Currently favoured progenitors include double-degenerate systems consisting of two carbon-oxygen white dwarfs with thin helium shells. In the double-detonation scenario, violent accretion leads to a helium detonation on the more massive primary white dwarf that turns into a carbon detonation in its core and explodes it. We investigate the fate of the secondary white dwarf, focusing on changes of the ejecta and observables of the explosion if the secondary explodes as well rather than survives. We simulate a binary system of a $1.05\, \mathrm{M_\odot }$ and a $0.7\, \mathrm{M_\odot }$ carbon-oxygen white dwarf with $0.03\, \mathrm{M_\odot }$ helium shells each. We follow the system self-consistently from inspiral to ignition, through the explosion, to synthetic observables. We confirm that the primary white dwarf explodes self-consistently. The helium detonation around the secondary white dwarf, however, fails to ignite a carbon detonation. We restart the simulation igniting the carbon detonation in the secondary white dwarf by hand and compare the ejecta and observables of both explosions. We find that the outer ejecta at $v~\gt ~15\, 000$ km s−1 are indistinguishable. Light curves and spectra are very similar until $\sim ~40more »\ \mathrm{d}$ after explosion and the ejecta are much more spherical than violent merger models. The inner ejecta differ significantly slowing down the decline rate of the bolometric light curve after maximum of the model with a secondary explosion by ∼20 per cent. We expect future synthetic 3D nebular spectra to confirm or rule out either model.

    « less