We present follow-up spectroscopy of 711 white dwarfs within 100 pc, and present a detailed model atmosphere analysis of the 100 pc white dwarf sample in the SDSS footprint. Our spectroscopic follow-up is complete for 83% of the white dwarfs hotter than 6000 K, where the atmospheric composition can be constrained reliably. We identify 1508 DA white dwarfs with pure hydrogen atmospheres. The DA mass distribution has an extremely narrow peak at $$0.59~M_{\odot}$$, and reveals a shoulder from relatively massive white dwarfs with $M=0.7$$-$$0.9~M_{\odot}$$. Comparing this distribution with binary population synthesis models, we find that the contribution from single stars that form through mergers cannot explain the over-abundance of massive white dwarfs. In addition, the mass distribution of cool DAs shows a near absence of $$M>1~M_{\odot}$$ white dwarfs. The pile-up of 0.7-$$0.9~M_{\odot}$$ and the disappearance of $$M>1~M_{\odot}$$ white dwarfs is consistent with the effects of core crystallization. Even though the evolutionary models predict the location of the pile-up correctly, the delay from the latent heat of crystallization by itself is insufficient to create a significant pile-up, and additional cooling delays from related effects like phase separation are necessary. We also discuss the population of infrared-faint (ultracool) white dwarfs, and demonstrate for the first time the existence of a well defined sequence in color and magnitude. Curiously, this sequence is connected to a region in the color-magnitude diagrams where the number of helium-dominated atmosphere white dwarfs is low. This suggests that the infrared-faint white dwarfs likely have mixed H/He atmospheres.
more »
« less
On the Nature of Ultracool White Dwarfs: Not so Cool Afterall
A recent analysis of the 100 pc white dwarf sample in the SDSS footprint demonstrated for the first time the existence of a well defined ultracool -- or IR-faint -- white dwarf sequence in the Hertzsprung-Russell diagram. Here we take advantage of this discovery to enlarge the IR-faint white dwarf sample threefold. We expand our selection to the entire Pan-STARRS survey footprint as well as the Montreal White Dwarf Database 100 pc sample, and identify 37 candidates with strong flux deficits in the optical. We present follow-up Gemini optical spectroscopy of 30 of these systems, and confirm all of them as IR-faint white dwarfs. We identify an additional set of 33 objects as candidates based on their colors and magnitudes. We present a detailed model atmosphere analysis of all 70 newly identified IR-faint white dwarfs together with 35 previously known objects reported in the literature. We discuss the physics of model atmospheres and show that the key physical ingredient missing in our previous generation of model atmospheres was the high-density correction to the He-minus free-free absorption coefficient. With new model atmospheres calculated for the purpose of this analysis, we now obtain significantly higher effective temperatures and larger stellar masses for these IR-faint white dwarfs than the Teff and M values reported in previous analyses, thus solving a two decade old problem. In particular, we identify in our sample a group of ultramassive white dwarfs in the Debye cooling phase with stellar parameters never measured before.
more »
« less
- Award ID(s):
- 1906379
- PAR ID:
- 10332424
- Date Published:
- Journal Name:
- The Astrophysical journal
- ISSN:
- 0004-637X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $$1.3\, {\rm M}_{\odot }$$ if they had pure H atmospheres and CO cores, including two outliers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to M = 1.334 M⊙, which corresponds to the high-density limit of our equation-of-state tables, ρ = 109 g cm−3. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.more » « less
-
Abstract We present a detailed model atmosphere analysis of massive white dwarfs withM> 0.9M⊙andTeff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1M⊙white dwarfs to 49% for 1.2–1.3M⊙. However, this fraction is as high as % for 1.1–1.2M⊙white dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process.more » « less
-
Abstract We report our findings on a spectroscopic survey of seven unresolved DA+DB binary white dwarf candidates. We have discovered extreme spectroscopic variations in one of these candidates, SDSS J084716.21+484220.40. Previous analysis failed to reproduce the optical spectrum using a single object with a homogeneous atmosphere. Our time-resolved spectroscopy reveals a double-faced white dwarf that switches between a DBA and DA spectral type over 6.5 or 8.9 hr due to varying surface abundances. We also provide time-series spectroscopy of the magnetic DBA, SDSS J085618.94+161103.6 (LB 8915), and confirm an inhomogeneous atmosphere. We employ an atmosphere model with hydrogen caps and a helium belt that yields excellent fits to our time-resolved spectra. We use the oblique rotator model to derive the system geometry for both targets. With the addition of these two objects, the emerging class of double-faced white dwarfs now consists of seven members. We summarize the properties of this new class of objects, and discuss how magnetism impacts the convective processes and leads to the formation of double-faced white dwarfs. We identify cooler versions of white dwarfs with inhomogeneous atmospheres among the cool magnetic DA white dwarf sample, where the Hαline is shallower than expected based on pure hydrogen atmosphere models.more » « less
-
ABSTRACT We present a detailed model atmosphere analysis of 14001 DA white dwarfs from the Montreal White Dwarf Database with ultraviolet photometry from the GALEX mission. We use the 100 pc sample, where the extinction is negligible, to demonstrate that there are no major systematic differences between the best-fitting parameters derived from optical only data and the optical + UV photometry. GALEX FUV and NUV data improve the statistical errors in the model fits, especially for the hotter white dwarfs with spectral energy distributions that peak in the UV. Fitting the UV to optical spectral energy distributions also reveals UV-excess or UV-deficit objects. We use two different methods to identify outliers in our model fits. Known outliers include objects with unusual atmospheric compositions, strongly magnetic white dwarfs, and binary white dwarfs, including double degenerates and white dwarf + main-sequence systems. We present a list of 89 newly identified outliers based on GALEX UV data; follow-up observations of these objects will be required to constrain their nature. Several current and upcoming large-scale spectroscopic surveys are targeting >105 white dwarfs. In addition, the ULTRASAT mission is planning an all-sky survey in the NUV band. A combination of the UV data from GALEX and ULTRASAT and optical data on these large samples of spectroscopically confirmed DA white dwarfs will provide an excellent opportunity to identify unusual white dwarfs in the solar neighbourhood.more » « less
An official website of the United States government

