skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiview Cross-supervision for Semantic Segmentation
This paper presents a semi-supervised learning framework for a customized semantic segmentation task using multiview image streams. A key challenge of the customized task lies in the limited accessibility of the labeled data due to the requirement of prohibitive manual annotation effort. We hypothesize that it is possible to leverage multiview image streams that are linked through the underlying 3D geometry, which can provide an additional supervisionary signal to train a segmentation model. We formulate a new cross-supervision method using a shape belief transfer---the segmentation belief in one image is used to predict that of the other image through epipolar geometry analogous to shape-from-silhouette. The shape belief transfer provides the upper and lower bounds of the segmentation for the unlabeled data where its gap approaches asymptotically to zero as the number of the labeled views increases. We integrate this theory to design a novel network that is agnostic to camera calibration, network model, and semantic category and bypasses the intermediate process of suboptimal 3D reconstruction. We validate this network by recognizing a customized semantic category per pixel from realworld visual data including non-human species and a subject of interest in social videos where attaining large-scale annotation data is infeasible.  more » « less
Award ID(s):
1846031
PAR ID:
10159646
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Winter Conference on Applications of Computer Vision
ISSN:
2472-6796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents MONET -- an end-to-end semi-supervised learning framework for a keypoint detector using multiview image streams. In particular, we consider general subjects such as non-human species where attaining a large scale annotated dataset is challenging. While multiview geometry can be used to self-supervise the unlabeled data, integrating the geometry into learning a keypoint detector is challenging due to representation mismatch. We address this mismatch by formulating a new differentiable representation of the epipolar constraint called epipolar divergence---a generalized distance from the epipolar lines to the corresponding keypoint distribution. Epipolar divergence characterizes when two view keypoint distributions produce zero reprojection error. We design a twin network that minimizes the epipolar divergence through stereo rectification that can significantly alleviate computational complexity and sampling aliasing in training. We demonstrate that our framework can localize customized keypoints of diverse species, e.g., humans, dogs, and monkeys. 
    more » « less
  2. Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D space while inferring their visibility states, given a single RGB image. Our key insight is to exploit domain knowledge to regularize the network by deeply supervising its hidden layers, in order to sequentially infer intermediate concepts associated with the final task. To acquire training data in desired quantities with ground truth 3D shape and relevant concepts, we render 3D object CAD models to generate large-scale synthetic data and simulate challenging occlusion configurations between objects. We train the network only on synthetic data and demonstrate state-of-the-art performances on real image benchmarks including an extended version of KITTI, PASCAL VOC, PASCAL3D+ and IKEA for 2D and 3D keypoint localization and instance segmentation. The empirical results substantiate the utility of our deep supervision scheme by demonstrating effective transfer of knowledge from synthetic data to real images, resulting in less overfitting compared to standard end-to-end training. 
    more » « less
  3. We investigate the role of representations and architectures for classifying 3D shapes in terms of their computational efficiency, generalization, and robustness to adversarial transformations. By varying the number of training examples and employing cross-modal transfer learning we study the role of initialization of existing deep architectures for 3D shape classification. Our analysis shows that multiview methods continue to offer the best generalization even without pretraining on large labeled image datasets, and even when trained on simplified inputs such as binary silhouettes. Furthermore, the performance of voxel-based 3D convolutional networks and point-based architectures can be improved via cross-modal transfer from image representations. Finally, we analyze the robustness of 3D shape classifiers to adversarial transformations and present a novel approach for generating adversarial perturbations of a 3D shape for multiview classifiers using a differentiable renderer. We find that point-based networks are more robust to point position perturbations while voxel-based and multiview networks are easily fooled with the addition of imperceptible noise to the input. 
    more » « less
  4. This paper presents a semi-supervised learning framework to train a keypoint detector using multiview image streams given the limited number of labeled instances (typically <4%). We leverage three self-supervisionary signals in multiview tracking to utilize the unlabeled data: (1) a keypoint in one view can be supervised by other views via epipolar geometry; (2) a keypoint detection must be consistent across time; (3) a visible keypoint in one view is likely to be visible in the adjacent view. We design a new end-toend network that can propagate these self-supervisionary signals across the unlabeled data from the labeled data in a differentiable manner. We show that our approach outperforms existing detectors including DeepLabCut tailored to the keypoint detection of non-human species such as monkeys, dogs, and mice. 
    more » « less
  5. Abstract. We present 4Diff, a 3D-aware diffusion model addressing the exo-to-ego viewpoint translation task—generating first-person (egocentric) view images from the corresponding third-person (exocentric) images. Building on the diffusion model’s ability to generate photorealistic images, we propose a transformer-based diffusion model that incorporates geometry priors through two mechanisms: (i) egocentric point cloud rasterization and (ii) 3D-aware rotary cross-attention. Egocentric point cloud rasterization converts the input exocentric image into an egocentric layout, which is subsequently used by a diffusion image transformer. As a component of the diffusion transformer’s denoiser block, the 3D-aware rotary cross-attention further incorporates 3D information and semantic features from the source exocentric view. Our 4Diff achieves state-of-the-art results on the challenging and diverse Ego-Exo4D multiview dataset and exhibits robust generalization to novel environments not encountered during training. Our code, processed data, and pretrained models are publicly available at https://klauscc.github.io/4diff. 
    more » « less