Biological collections store information with broad societal and environmental impact. In the last 15 years, after worldwide investments and crowdsourcing efforts, 25% of the collected specimens have been digitized; a process that includes the imaging of text attached to specimens and subsequent extraction of information from the resulting image. This information extraction (IE) process is complex, thus slow and typically involving human tasks. We propose a hybrid (Human-Machine) information extraction model that efficiently uses resources of different cost (machines, volunteers and/or experts) and speeds up the biocollections' digitization process, while striving to maintain the same quality as human-only IE processes. In the proposed model, called SELFIE, self-aware IE processes determine whether their output quality is satisfactory. If the quality is unsatisfactory, additional or alternative processes that yield higher quality output at higher cost are triggered. The effectiveness of this model is demonstrated by three SELFIE workflows for the extraction of Darwin-core terms from specimens' images. Compared to the traditional human-driven IE approach, SELFIE workflows showed, on average, a reduction of 27% in the information-capture time and a decrease of 32% in the required number of humans and their associated cost, while the quality of the results was negligibly reduced by 0.27%.
more »
« less
Quality-Aware Human-Machine Text Extraction for Biocollections using Ensembles of OCRs
Information Extraction (IE) from imaged text is affected by the output quality of the text-recognition process. Misspelled or missing text may propagate errors or even preclude IE. Low confidence in automated methods is the reason why some IE projects rely exclusively on human work (crowdsourcing). That is the case of biological collections (biocollections), where the metadata (Darwin-core Terms) found in digitized labels are transcribed by citizen scientists. In this paper, we present an approach to reduce the number of crowdsourcing tasks required to obtain the transcription of the text found in biocollections' images. By using an ensemble of Optical Character Recognition (OCR) engines - OCRopus, Tesseract, and the Google Cloud OCR - our approach identifies the lines and characters that have a high probability of being correct. This reduces the need for crowdsourced transcription to be done for only low confidence fragments of text. The number of lines to transcribe is also reduced through hybrid human-machine crowdsourcing where the output of the ensemble of OCRs is used as the first "human" transcription of the redundant crowdsourcing process. Our approach was tested in six biocollections (2,966 images), reducing the number of crowdsourcing tasks by 76% (58% due to lines accepted by the ensemble of OCRs and about 18% due to accelerated convergence when using hybrid crowdsourcing). The automatically extracted text presented a character error rate of 0.001 (0.1%).
more »
« less
- Award ID(s):
- 1535086
- PAR ID:
- 10159714
- Date Published:
- Journal Name:
- 2019 15th International Conference on Science (eScience), San Diego, CA, USA
- Page Range / eLocation ID:
- 116 to 125
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Historical data sources, like medical records or biological collections, consist of unstructured heterogeneous content: handwritten text, different sizes and types of fonts, and text overlapped with lines, images, stamps, and sketches. The information these documents can provide is important, from a historical perspective and mainly because we can learn from it. The automatic digitization of these historical documents is a complex machine learning process that usually produces poor results, requiring costly interventions by experts, who have to transcribe and interpret the content. This paper describes hybrid (Human- and Machine-Intelligent) workflows for scientific data extraction, combining machine-learning and crowdsourcing software elements. Our results demonstrate that the mix of human and machine processes has advantages in data extraction time and quality, when compared to a machine-only workflow. More specifically, we show how OCRopus and Tesseract, two widely used open source Optical Character Recognition (OCR) tools, can improve their accuracy by more than 42%, when text areas are cropped by humans prior to OCR, while the total time can increase or decrease depending on the OCR selection. The digitization of 400 images, with Entomology, Bryophyte, and Lichen specimens, is evaluated following four different approaches: processing the whole specimen image (machine-only), processing crowd cropped labels (hybrid), processing crowd cropped fields (hybrid), and cleaning the machine-only output. As a secondary result, our experiments reveal differences in speed and quality between Tesseract and OCRopus.more » « less
-
In the last decade, institutions from around the world have implemented initiatives for digitizing biological collections (biocollections) and sharing their information online. The transcription of the metadata from photographs of specimens' labels is performed through human-centered approaches (e.g., crowdsourcing) because fully automated Information Extraction (IE) methods still generate a significant number of errors. The integration of human and machine tasks has been proposed to accelerate the IE from the billions of specimens waiting to be digitized. Nevertheless, in order to conduct research and trying new techniques, IE practitioners need to prepare sets of images, crowdsourcing experiments, recruit volunteers, process the transcriptions, generate ground truth values, program automated methods, etc. These research resources and processes require time and effort to be developed and architected into a functional system. In this paper, we present a simulator intended to accelerate the ability to experiment with workflows for extracting Darwin Core (DC) terms from images of specimens. The so-called HuMaIN Simulator includes the engine, the human-machine IE workflows for three DC terms, the code of the automated IE methods, crowdsourced and ground truth transcriptions of the DC terms of three biocollections, and several experiments that exemplify its potential use. The simulator adds Human-in-the-loop capabilities, for iterative IE and research on optimal methods. Its practical design permits the quick definition, customization, and implementation of experimental IE scenarios.more » « less
-
Citizen science projects have successfully taken advantage of volunteers to unlock scientific information contained in images. Crowds extract scientific data by completing different types of activities: transcribing text, selecting values from pre-defined options, reading data aloud, or pointing and clicking at graphical elements. While designing crowdsourcing tasks, selecting the best form of input and task granularity is essential for keeping the volunteers engaged and maximizing the quality of the results. In the context of biocollections information extraction, this study compares three interface actions (transcribe, select, and crop) and tasks of different levels of granularity (single field vs. compound tasks). Using 30 crowdsourcing experiments and two different populations, these interface alternatives are evaluated in terms of speed, quality, perceived difficulty and enjoyability. The results show that Selection and Transcription tasks generate high quality output, but they are perceived as boring. Conversely, Cropping tasks, and arguably graphical tasks in general, are more enjoyable, but their output quality depend on additional machine-oriented processing. When the text to be extracted is longer than two or three words, Transcription is slower than Selection and Cropping. When using compound tasks, the overall time required for the crowdsourcing experiment is considerably shorter than using single field tasks, but they are perceived as more difficult. When using single field tasks, both the quality of the output and the amount of identified data are slightly higher compared to compound tasks, but they are perceived by the crowd as less entertaining.more » « less
-
null (Ed.)Programming screencasts can be a rich source of documentation for developers. However, despite the availability of such videos, the information available in them, and especially the source code being displayed is not easy to find, search, or reuse by programmers. Recent work has identified this challenge and proposed solutions that identify and extract source code from video tutorials in order to make it readily available to developers or other tools. A crucial component in these approaches is the Optical Character Recognition (OCR) engine used to transcribe the source code shown on screen. Previous work has simply chosen one OCR engine, without consideration for its accuracy or that of other engines on source code recognition. In this paper, we present an empirical study on the accuracy of six OCR engines for the extraction of source code from screencasts and code images. Our results show that the transcription accuracy varies greatly from one OCR engine to another and that the most widely chosen OCR engine in previous studies is by far not the best choice. We also show how other factors, such as font type and size can impact the results of some of the engines. We conclude by offering guidelines for programming screencast creators on which fonts to use to enable a better OCR recognition of their source code, as well as advice on OCR choice for researchers aiming to analyze source code in screencasts.more » « less