The sky polarization pattern during solar eclipse totality shifts from the usual daytime clear-sky pattern, with maximum polarization in an arc located 90° from the Sun, to one with maximum polarization slightly above the horizon in a ring nominally concentric about the zenith. A sequence of 9 visible-wavelength all-sky images are shown throughout totality for the 21 August 2017 solar eclipse from a site near Rexburg, ID USA (43.8294°N, 111.8849°W). A neutral region appeared in the southwest quadrant of the all-sky images, directly opposite the eclipsed Sun, and evolved in size and radial position throughout the 2 min 17 s of totality.
more »
« less
Digital all-sky polarization imaging of the total solar eclipse on 21 August 2017 in Rexburg, Idaho, USA
All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s.
more »
« less
- Award ID(s):
- 1936028
- PAR ID:
- 10159773
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 21
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. F41
- Size(s):
- Article No. F41
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Solar eclipses are magnificent natural phenomena during which the sun is obscured by the moon. Besides the unique opportunity of studying the solar corona and immediate vicinity of the sun, an eclipse also leads to a darkened daytime sky with sunset colors and many other fascinating phenomena. Here we focus on how the daytime horizontal visual range changed during the duration of the solar eclipse of 21 August 2017, observed from Rexburg, Idaho, USA. Close to totality the eastern horizon for a short time period showed the contours of the Grand Teton Mountains from distances between about 80 km to 90 km. We show and discuss photographic images that show the visual range during totality being significantly extended beyond the visual range in most of the partial phase before and after totality, which was below 80 km when the mountains could not be seen by the naked eye. This phenomenon of an extended visual range can be explained in terms of a simple model for the daytime visual range. This model, which will be explained in this presentation, nicely reproduces the observations and also predicts other phenomena; for example, it predicts that similar phenomena may be observed if part of the line of sight close to the observer is in deep shade of a thick cloud cover. The presentation will tie these observations and their explanation to the teaching of optical scattering and atmospheric optics.more » « less
-
Abstract Accurate cloud type identification and coverage analysis are crucial in understanding the Earth’s radiative budget. Traditional computer vision methods rely on low-level visual features of clouds for estimating cloud coverage or sky conditions. Several handcrafted approaches have been proposed; however, scope for improvement still exists. Newer deep neural networks (DNNs) have demonstrated superior performance for cloud segmentation and categorization. These methods, however, need expert engineering intervention in the preprocessing steps—in the traditional methods—or human assistance in assigning cloud or clear sky labels to a pixel for training DNNs. Such human mediation imposes considerable time and labor costs. We present the application of a new self-supervised learning approach to autonomously extract relevant features from sky images captured by ground-based cameras, for the classification and segmentation of clouds. We evaluate a joint embedding architecture that uses self-knowledge distillation plus regularization. We use two datasets to demonstrate the network’s ability to classify and segment sky images—one with ∼ 85,000 images collected from our ground-based camera and another with 400 labeled images from the WSISEG database. We find that this approach can discriminate full-sky images based on cloud coverage, diurnal variation, and cloud base height. Furthermore, it semantically segments the cloud areas without labels. The approach shows competitive performance in all tested tasks,suggesting a new alternative for cloud characterization.more » « less
-
Abstract How do the atmosphere and airborne insects respond to the abrupt cessation and restoration of sunlight during a total eclipse? The Flexible Array of Radars and Mesonets (FARM), including three mobile Doppler on Wheels (DOW) radars, mobile mesonets, Pod weather stations, and an upper-air sounding system, was deployed as an unprecedentedly dense observing network in the path of totality of the 21 August 2017 eclipse that spanned the United States from its Pacific to Atlantic coasts. This was the first targeted dual-polarization radar, multiple-Doppler, and micronet study of the impacts of totality on meteorology and insect behavior. The study area was chosen to be completely sunny, nearly devoid of trees, with homogeneous, nonforested land use, and very flat. This resulted in as near an ideal observational environment as realistically attainable to observe the effects of a total solar eclipse absent the confounding effects of variable cloud shading, terrain, and land use. Rapid and substantial changes in the boundary layer and propagation of a prominent radar fine line associated with a posttotality wind shift mechanism different than previously hypothesized were observed. Profound and rapid changes in airborne insect behavior were documented, including descent and then reascent during the minutes immediately surrounding totality, with implications related to solar-related insect navigational mechanisms and behavior.more » « less
-
null (Ed.)The sky exhibits a unique spatial polarization pattern by scattering the unpolarized sun light. Just like insects use this unique angular pattern to navigate, we use it to map pixels to directions on the sky. That is, we show that the unique polarization pattern encoded in the polarimetric appearance of an object captured under the sky can be decoded to reveal the surface normal at each pixel. We derive a polarimetric reflection model of a diffuse plus mirror surface lit by the sun and a clear sky. This model is used to recover the per-pixel surface normal of an object from a single polarimetric image or from multiple polarimetric images captured under the sky at different times of the day. We experimentally evaluate the accuracy of our shape-from-sky method on a number of real objects of different surface compositions. The results clearly show that this passive approach to fine-geometry recovery that fully leverages the unique illumination made by nature is a viable option for 3D sensing. With the advent of quad-Bayer polarization chips, we believe the implications of our method span a wide range of domains.more » « less
An official website of the United States government
