skip to main content


Title: Shape From Sky: Polarimetric Normal Recovery Under the Sky
The sky exhibits a unique spatial polarization pattern by scattering the unpolarized sun light. Just like insects use this unique angular pattern to navigate, we use it to map pixels to directions on the sky. That is, we show that the unique polarization pattern encoded in the polarimetric appearance of an object captured under the sky can be decoded to reveal the surface normal at each pixel. We derive a polarimetric reflection model of a diffuse plus mirror surface lit by the sun and a clear sky. This model is used to recover the per-pixel surface normal of an object from a single polarimetric image or from multiple polarimetric images captured under the sky at different times of the day. We experimentally evaluate the accuracy of our shape-from-sky method on a number of real objects of different surface compositions. The results clearly show that this passive approach to fine-geometry recovery that fully leverages the unique illumination made by nature is a viable option for 3D sensing. With the advent of quad-Bayer polarization chips, we believe the implications of our method span a wide range of domains.  more » « less
Award ID(s):
1715195
NSF-PAR ID:
10292291
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Conference on Computer Vision and Pattern Recognition
ISSN:
2163-6648
Page Range / eLocation ID:
.14832-14841
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s.

     
    more » « less
  2. We report the results of polarimetric observations of the total solar eclipse of 21 August 2017 from Rexburg, Idaho (USA).We use three synchronized DSLR cameras with polarization filters oriented at 0, 60, and 120 to provide high-dynamic-range RGB polarization images of the corona and surrounding sky.We measure tangential coronal polarization and vertical sky polarization, both as expected. These observations provide detailed detections of polarization neutral points above and below the eclipsed Sun where the coronal polarization is canceled by the sky polarization.We name these special polarization neutral points afterMinnaert and Van de Hulst. 
    more » « less
  3. The sky polarization pattern during solar eclipse totality shifts from the usual daytime clear-sky pattern, with maximum polarization in an arc located 90° from the Sun, to one with maximum polarization slightly above the horizon in a ring nominally concentric about the zenith. A sequence of 9 visible-wavelength all-sky images are shown throughout totality for the 21 August 2017 solar eclipse from a site near Rexburg, ID USA (43.8294°N, 111.8849°W). A neutral region appeared in the southwest quadrant of the all-sky images, directly opposite the eclipsed Sun, and evolved in size and radial position throughout the 2 min 17 s of totality. 
    more » « less
  4. ABSTRACT

    Low surface brightness (LSB) galaxies are galaxies with central surface brightness fainter than the night sky. Due to the faint nature of LSB galaxies and the comparable sky background, it is difficult to search LSB galaxies automatically and efficiently from large sky survey. In this study, we established the low surface brightness galaxies autodetect (LSBG-AD) model, which is a data-driven model for end-to-end detection of LSB galaxies from Sloan Digital Sky Survey (SDSS) images. Object-detection techniques based on deep learning are applied to the SDSS field images to identify LSB galaxies and estimate their coordinates at the same time. Applying LSBG-AD to 1120 SDSS images, we detected 1197 LSB galaxy candidates, of which 1081 samples are already known and 116 samples are newly found candidates. The B-band central surface brightness of the candidates searched by the model ranges from 22 to 24 mag arcsec−2, quite consistent with the surface brightness distribution of the standard sample. A total of 96.46 per cent of LSB galaxy candidates have an axial ratio (b/a) greater than 0.3, and 92.04 per cent of them have $fracDev\_r$ < 0.4, which is also consistent with the standard sample. The results show that the LSBG-AD model learns the features of LSB galaxies of the training samples well, and can be used to search LSB galaxies without using photometric parameters. Next, this method will be used to develop efficient algorithms to detect LSB galaxies from massive images of the next-generation observatories.

     
    more » « less
  5. ABSTRACT X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV. 
    more » « less