Abstract Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called “plasma emission” framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f pe and/or its harmonic 2 f pe . However, the details of the physics of mode conversion are unclear, and so far the magnetic component of the plasma waves has not been definitively measured. Several spacecraft have measured quasi-monochromatic Langmuir or slow extraordinary modes (sometimes called z -modes) in the solar wind. These coherent waves are expected to have a weak magnetic component, which has never been observed in an unambiguous way. Here we report on the direct measurement of the magnetic signature of these waves using the Search Coil Magnetometer sensor of the Parker Solar Probe/FIELDS instrument. Using simulations of wave propagation in an inhomogeneous plasma, we show that the appearance of the magnetic component of the slow extraordinary mode is highly influenced by the presence of density inhomogeneities that occasionally cause the refractive index to drop to low values where the wave has strong electromagnetic properties.
more »
« less
Experimental studies of the difference between plasma potentials measured by Langmuir probes and emissive probes in presheaths
The plasma potential measured by cylindrical and planar Langmuir probes has been shown to differ from the plasma potential measured by emissive probes in the neighborhood of the presheath near a negatively biased electrode immersed in a weakly collisional low temperature argon plasma. There are two principal results demonstrated in this paper. First, while it is well known that Langmuir probes cannot reliably measure plasma potentials inside of sheaths, results presented here demonstrate that the problem persists in presheaths, the quasineutral plasma bordering sheaths. It is known that emissive probes analyzed in the limit of zero emission accurately measure the plasma potential in the sheath. It is now clear that they are the only known electrostatic probe technique able to measure the plasma potential accurately throughout the presheath. Second, it is shown that the difference between potential measurements made by Langmuir probes and emissive probes in the body of the plasma, farther than a presheath distance from the boundary, is not proportional to Te, as has been previously claimed.
more »
« less
- Award ID(s):
- 1804654
- PAR ID:
- 10160080
- Date Published:
- Journal Name:
- Plasma sources science technology
- Volume:
- 29
- Issue:
- 2
- ISSN:
- 0963-0252
- Page Range / eLocation ID:
- 025015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonthermal plasmas in contact with liquids have been shown to generate a variety of reactive species capable of initiating reduction–oxidation (redox) reactions at the electrochemically active plasma–liquid interface. In conventional electrochemical cells, selective redox chemistry is achieved by controlling the reduction potential at the solid electrode–electrolyte interface by applying a bias via an external circuit. In the case of plasma–liquid systems, an analogous means of tuning the reduction potential near the interface has not clearly been identified. When treated as a floating surface, the liquid is expected to adopt a net negative charge to balance the flux of hot electrons and relatively cold positive ions. The reduction potential near the plasma–liquid interface is hypothesized to be proportional to the floating potential, which can be approximated using an analytical model provided the plasma parameters are known. Herein, we present a framework for correlating the electron density and electron temperature of a noble gas plasma jet to the reduction potential near the plasma–liquid interface. The plasma parameters were acquired for an argon atmospheric plasma jet in contact with an aqueous solution by means of laser Thomson scattering. The reduction potential was determined using identical reference electrodes to measure the potential difference between the plasma–liquid interface and bulk solution. Interestingly, the measured reduction potentials near the plasma–liquid interface were found to be in good agreement with the model-predicted values determined using the plasma parameters obtained from the Thomson scattering experiments.more » « less
-
Abstract The detection of the accelerated expansion of the Universe has been one of the major breakthroughs in modern cosmology. Several cosmological probes (Cosmic Microwave Background, Supernovae Type Ia, Baryon Acoustic Oscillations) have been studied in depth to better understand the nature of the mechanism driving this acceleration, and they are being currently pushed to their limits, obtaining remarkable constraints that allowed us to shape the standard cosmological model. In parallel to that, however, the percent precision achieved has recently revealed apparent tensions between measurements obtained from different methods. These are either indicating some unaccounted systematic effects, or are pointing toward new physics. Following the development of CMB, SNe, and BAO cosmology, it is critical to extend our selection of cosmological probes. Novel probes can be exploited to validate results, control or mitigate systematic effects, and, most importantly, to increase the accuracy and robustness of our results. This review is meant to provide a state-of-art benchmark of the latest advances in emerging “beyond-standard” cosmological probes. We present how several different methods can become a key resource for observational cosmology. In particular, we review cosmic chronometers, quasars, gamma-ray bursts, standard sirens, lensing time-delay with galaxies and clusters, cosmic voids, neutral hydrogen intensity mapping, surface brightness fluctuations, stellar ages of the oldest objects, secular redshift drift, and clustering of standard candles. The review describes the method, systematics, and results of each probe in a homogeneous way, giving the reader a clear picture of the available innovative methods that have been introduced in recent years and how to apply them. The review also discusses the potential synergies and complementarities between the various probes, exploring how they will contribute to the future of modern cosmology.more » « less
-
Abstract Chemiluminescence imaging of bioanalytes using spiroadamantane 1,2‐dioxetanes has gained significant attention due to improved signal‐to‐noise ratios and imaging depth compared to excitation‐based probes, as well as their modifiable scaffolds that offer analyte‐specific responses and tunable emissive properties. Among several strategies employed to amplify signals under aqueous conditions and to shift the emission into the bio‐relevant red region, energy transfer to an adjacent fluorophore is a popular and effective method. This Minireview highlights spiroadamantane 1,2‐dioxetane‐based probes that operate via an energy transfer mechanism to detect bioanalytes both in vitro and in vivo. Probes that display both non‐covalent and covalent interactions with fluorophores, as well as their applications in imaging specific analytes will be discussed.more » « less
-
One of the limitations in studying dusty plasmas is that many of the important properties of the dust (like the charge) are directly coupled to the surrounding plasma conditions rather than being determined independently. The application of high-intensity ultraviolet (UV) sources to generate discharging photoelectric currents may provide an avenue for developing methods of controlling dust charge. Careful selection of the parameters of the UV source and dust material may even allow for this to be accomplished with minimal perturbation of the background plasma. The Auburn Magnetized Plasma Research Laboratory (MPRL) has developed a ‘proof-of-concept’ experiment for this controlled photo-discharging of dust; a high-intensity, near-UV source was used to produce large changes in the equilibrium positions of lanthanum hexaboride ( $$\textrm {LaB}_6$$ ) particles suspended in an argon DC glow discharge with negligible changes in the potential, density and temperature profiles of the background plasma. The shifts in equilibrium position of the dust are consistent with a reduction in dust charge. Video analysis is used to quantify the changes in position, velocity and acceleration of a test particle under the influence of the UV and Langmuir probes are used to measure the effects on the plasma.more » « less
An official website of the United States government

